期刊文献+

A family of transitive modular Lie superalgebras with depth one 被引量:4

A family of transitive modular Lie superalgebras with depth one
原文传递
导出
摘要 The embedding theorem is established for Z-graded transitive modular Lie superalgebras g■■■(g-1)satisfying the conditions: (i)g0■■(g-1) and g0-module g-1 is isomorphic to the natural■(g-1)-module; (ii)dim g1=2/3n(2n^2+1),where n=1/2dim g-1. In particular,it is proved that the finite-dimensional simple modular Lie superalgebras satisfying the conditions above are isomorphic to the odd Hamiltonian superalgebras.The restricted Lie superalgebras are also considered. The embedding theorem is established for Z-graded transitive modular Lie superalgebras (i) g0(≌)(p)(g~1) and go-module g-1 is isomorphic to the natural (p)(g-1)-module;(ii) dim g1 =2/3n(2n2 + 1), where n =1/2 dim g-1.In particular, it is proved that the finite-dimensional simple modular Lie superalgebras satisfying the conditions above are isomorphic to the odd Hamiltonian superalgebras. The restricted Lie superalgebras are also considered.
出处 《Science China Mathematics》 SCIE 2007年第10期1451-1466,共16页 中国科学:数学(英文版)
基金 This work is partially supported by the National Natural Science Foundation of China(Grant No.10671160) China Postdoctoral Science Foundation(Grant No.20060400107)
关键词 flag divided power algebra modular LIE superalgebra embedding THEOREM flag divided power algebra modular Lie superalgebra embedding theorem
  • 相关文献

参考文献2

二级参考文献3

共引文献77

同被引文献1

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部