期刊文献+

非等温条件下道路水分迁移的数值模拟 被引量:10

Numerical simulation of moisture migration in roadway under condition of transient temperature
在线阅读 下载PDF
导出
摘要 通过分析季节冻土区的温度分布规律,建立了温度随时间的变化函数。在此基础上,基于连续介质力学和热力学理论,建立了道路水分迁移过程中的水热耦合动力学模型,并对季节性冻土地区的水分迁移现象进行数值模拟分析,初步探讨了在非等温冻结条件下,水热耦合过程中路基填料的含水量和温度随时间和深度变化的关系,计算结果表明,冻结过程中在冻结峰面附近形成一个冻结含水量峰值,且该峰值随着冻结时间的延长而向深度发展,这对于路基路面的综合设计,道路冻害的预报有着重要的理论意义和实际应用价值。但要真正体现道路路基水分迁移的机理,有待于建立水分迁移过程中水、热、动载和渗流耦合模型,这是有待于进一步解决的问题。 By analyzing the rule of temperature distribution in seasonal frozen soil area, the function of temperature with time is established. A dynamics coupling model of moisture and heat in the process of moisture migration in roadway is established based on the theory of continuum mechanics and the thermodynamics. The numerical simulation analysis is studied for the moisture migration phenomena of seasonal frozen soil area ; and the soil moisture content and temperature change with time and depth are discussed under the condition of transient temperature and the coupling process of moisture-heat. The results indicate that a peak of frozen moisture content is formed in frozen peak surface, which is developed for depth change with time increased. It would be theoretic significance and practical value to the design of roadbed and pavement and prediction of frosting harm for roadway. Furthermore, the coupling model of moisture, heat, dynamic load and seepage flow will have to be established for truly embodying the moisture migration mechanism of roadbed, which remains to be solved.
出处 《岩土力学》 EI CAS CSCD 北大核心 2004年第z2期231-234,共4页 Rock and Soil Mechanics
基金 辽宁省博士启动基金(000823) 辽宁工程技术大学校基金资助项目
关键词 水分迁移 非等温 动力学模型 冻结 数值模拟 moisture migration transient temperature dynamics coupling frosting numerical simulation
  • 相关文献

参考文献7

  • 1[1]Philip,J.R,Evaporation moisture and heat fields in the soil,J.Metorol,1957,14:354-366.
  • 2[2]Trevisan O.V. and Bejan A.Natural convection with combined heat and mass transfer buoyancy effects in a porous medium[J].Int.J.Heat Mass Transfer,1985,28(8):1597-1611.
  • 3徐学祖,邓友生.冻土中水分迁移规律的研究[M].北京:科学出版社,1991.
  • 4[4]Hopke S W. A model for frost heave including over-burden[J]. Could Region Sci technol,1980,3..(2):111~127.
  • 5[5]Gilpin R R. A mode1 for the prediction of ice 1ensing and frost heave in soi1s[J].Water Resource Resh, 1980,16( 5):918-930.
  • 6张树光,张向东,易富.基于分形插值理论的冻胀量预报研究[J].岩石力学与工程学报,2004,23(13):2276-2279. 被引量:8
  • 7张树光,马士进,张向东.城市道路翻浆过程的动力学模型研究[J].中国地质灾害与防治学报,2003,14(2):94-97. 被引量:11

二级参考文献18

  • 1令锋,王继民.分形曲线Box-counting维数的一种逼近算法[J].甘肃科学学报,1996,8(2):56-59. 被引量:4
  • 2安维东.冻土的温度水分应力及其相互作用[M].兰州:兰州大学出版社,1990..
  • 3孟宪民.路基稳定及翻浆处理技术报告[R].辽宁省交通工程质量监督站,1999..
  • 4[1]Hopke S W. A model for frost heave including over-burden[J]. Cold RegionSci. Tech., 1980, 3(2): 111~127
  • 5[2]Gilpin R R. A model for the prediction of ice lensing and frost heave in soils[J]. Water Resource Resh., 1980, 16(5): 918~930
  • 6[5]Bamsley M F, Demko S. Iterated function system and the global construction of fractal[J]. Proc. of the Royal Society of London(A),1985, 399:243~275
  • 7[6]Barnsley M F. Fractal functions and interplolation[J]. Constructive Aproximation, 1986, 2: 303~326
  • 8[7]Mandelbrot B B. The Fractal Geometry of Nature[M]. New York: W H Freeman, 1982
  • 9[8]Falconer K J. Fractal Geometry: Mathematical Foundation and Application[M]. New York: Wiley, 1990
  • 10Glipin R R. A model for the prediction of ice lensing and frost heave in softs [J]. Water Resour. Res., 1980, 16(5) : 918-930.

共引文献17

同被引文献71

引证文献10

二级引证文献115

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部