期刊文献+

基于相位检测算子的各向异性扩散方法 被引量:1

Phase detector-based anisotropic diffusion
在线阅读 下载PDF
导出
摘要 近年来,各向异性扩散的方法在图像去噪中广泛运用.然而,对于乘性噪声和低对比度图像,传统的各向异性方法易造成边缘扩散.提出了一种新的基于边界检测算子的超声图像抑制斑点的方法,其中边界检测算子结合了相位一致性和相位反对称的方法PCA.首先,结合相位一致性和相位反对称特征提取模型生成PCA,然后将PCA边界检测算子代替传统方法中的边界检测算子,从而生成新的基于边缘检测的各向异性扩散方法PCA-AD;最后,分别进行了模拟和实际超声图像实验.实验结果表明,PCA-AD方法在均值保持、减小方差和边缘定位方面胜过传统各向异性扩散方法. In recent years,the anisotropic diffusion method has been widely used in the image noise reduction.However,conventional anisotropic diffusion is easy to cause edge diffusion for images corrupted with multiplicative noise and low contrast.This paper presents a new speckle reduction method for ultrasound images based on a new edge detector,namely the phase congruency and asymmetry detector(PCA).Firstly,PCA is developed from the phase congruency and symmetry model of feature detection.And then the edge detector in the traditional anisotropic diffusion is replaced by the PCA edge detector and the PCA edge detector-based anisotropic diffusion(PCAAD)is derived.Experiments are performed on both synthetic and real ultrasound images.The results show that the PCAAD meth od excels over traditional anisotropic diffusion method in terms of mean preservation,variance reduction and edge localization.
作者 季春红 余锦华 汪源源 Ji Chunhong;Yu Jinhua;Wang Yuanyuan(Department of Electronic Engineering,Fudan Unitersity,Shanghai 200433,China;Key laboratory of Medical Imaging Compuing and Computer Assisted Intervention of Shanghai,Shanghai 200433,China)
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2015年第S01期184-188,共5页 Chinese Journal of Scientific Instrument
基金 中国国家自然基金(81101049,61271071) 上海市浦江人才计划(12PJ1401200) 教育部博士点基金(20110071120019)项目资助
关键词 各向异性扩散 相位一致性 相位反对称 边缘检测算子 anisotropic diffusion(AD) phase congruency phase asymmetry edge detection operator
  • 相关文献

参考文献5

二级参考文献53

  • 1陈波,杨阳,沈田双.一种基于不变矩和SVM的图像目标识别方法[J].仪器仪表学报,2006,27(z3):2093-2094. 被引量:11
  • 2梁晓云,章品正,王蔚林,曾卫明,罗立民,王立功,周正东.Hausdorff距离与GA相结合的医学图像配准[J].仪器仪表学报,2004,25(z1):535-537. 被引量:2
  • 3张光玉,解梅,马争.一种新的彩色图像边缘检测算法[J].电子科技大学学报,2005,34(2):164-167. 被引量:10
  • 4胡永胜,赵军红,贺小亮.高压电力设备红外图像的边缘检测[J].国外电子测量技术,2006,25(11):56-59. 被引量:7
  • 5FORESTI G L, GENTILI S. A vision based system for object detection in underwater images [ J ]. International Journal of Pattern Recognition and Artificial Intelligence, 2001,14(2) :167-188.
  • 6Vlqq'ORIO M, ANDREA T. Confidence-based approach to enhancing underwater acoustic image formation [ J ]. IEEE Trans on Image Proeessing, 1999,82 (2) :270-285.
  • 7MIGNOTYE M. Markov random field and fuzzy logic mod- eling in sonar imagery: Application to the classification of underwater floor[ J]. Computer Vision and Image Under- standing,2000,79 ( 1 ) :4-24.
  • 8DANIEL S. Side-scan sonar image matching [ J ]. IEEE Journal of Oceanic Engineering, 1998,23 ( 3 ) : 245-259.
  • 9LIU CH CH, SANG EN F. Application of morphological fiher in underwater acoustic-image processing system [ C]. Papers of the 3rd International workshop on Acous- tical Engineering and Techonology,2002:207-210.
  • 10KASS M, WITKIN A,TERZOPOULOS D. Snakes: Ac- tive contour models [ J ]. International Journal of Comput- er Vision, 1987,1 (4) : 321-331.

共引文献88

同被引文献8

引证文献1

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部