摘要
高功率脉冲反应磁控溅射技术具有放电等离子密度高、溅射材料离化率高和绕镀性好的特点,已被广泛用于金属氮化物强化涂层的设计制备,但受沉积过程实时在线诊断困难,决定涂层结构性能的关键等离子体特性尚不清晰。基于自主研制的高功率脉冲磁控溅射装备,采用Langmuir探针研究不同N_(2)流量下CrN_(x)涂层的反应等离子体放电特性与组分结构变化。固定溅射功率为3 kW,随着N_(2)流量从10 mL/min增加至75 mL/min,放电峰值功率密度和电子能量分布函数中的高能电子比例均呈现先上升后降低趋势,在55 mL/min N_(2)流量时达到最高值,其峰值功率密度为320 W/cm^(2)。分析表明,当通入过量N_(2)时,靶中毒程度加剧,因表面生成CrN_(x)化合物的二次电子发射系数低于Cr,近基体区电子密度从3.9×10^(17)/m^(3)逐渐下降至2.2×10^(17)/m^(3),低密度离子入射降低了沉积粒子的热扩散迁移长度,使得涂层呈现CrN(220)晶面择优柱状生长。
Reactive high power impulse magnetron sputtering(R-HiPIMS)technology is widely used in the deposition of transition metal nitride(TMN)coatings,because of its combine advantages of high ion flux and excellent uniformity over large area deposition.However,there is still a lack of study on the relationship between the plasma discharge behavior of R-HiPIMS and the microstructures of deposited TMN coatings.The CrN_(x)coating as a function of reactive N_(2)flow rate is fabricated by a home-made HiPIMS technique.Particularly,the dependence of plasma discharge characteristics upon microstructural evolution of CrN_(x)coating is focused by using the Langmuir probe.The results show that,with the increase of N_(2)flow rate from 10 mL/min to 55 mL/min,both the peak power density and the high-energy electrons ratio increased firstly,where the maximum peak power density value is up to 320 W/cm^(2).However,further increasing the N_(2)flow rate to 75 mL/min stimulated the target poisoning,where the CrN_(x)compound with low secondary electron emission factor is formed on the target surface.Electron density near in the substrate vicinity is decreased from 3.9×10^(17)/m^(3)to 2.2×10^(17)/m^(3)and the thermal diffusion is suppressed by ion bombardment significantly,which thereafter resulted in the preferred columnar growth of CrN(220)plane with a shorter diffusion length.
作者
祁宇星
周广学
左潇
都宏
陈仁德
汪爱英
QI Yuxing;ZHOU Guangxue;ZUO Xiao;DU Hong;CHEN Rende;WANG Aiying(Ningbo Institute of Materials Technology and Engineering,CAS,Ningbo 315201,China;Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,Beijing 100049,China;Nano Science and Technology Institute,University of Science and Technology of China,Soochow 215123,China)
出处
《中国表面工程》
EI
CAS
CSCD
北大核心
2022年第5期184-191,共8页
China Surface Engineering
基金
国家自然科学基金(52025014)
宁波市自然科学基金(202003N4025,2021J217)资助项目