摘要
精准地预测无线通信网络流量能够辅助运营商进行精细化运营,更高效地配备与部署基站资源,从而满足大量涌现的各种业务需求。然而,高度复杂的时空依赖性以及多源跨域因素的影响使得无线通信流量的精准预测面临着巨大的挑战。首先,对无线通信流量从时间属性、空间属性、社会属性、以及自然属性进行相关性分析,数据分析表明,无线通信流量具有多源跨域性;其次,基于对无线通信流量多重属性的全面分析,提出了一种改进的密集全连接网络模型MST-DenseNet。该模型利用单个DenseUnit结构的卷积操作捕获无线通信流量的空间相关性,利用多个并列的DenseUnit结构捕获无线通信流量在不同时间尺度上的相关性,同时考虑跨域数据对流量的影响,最终将通信流量自身的时空特征与跨域数据中的社会特征、自然特征高效融合,实现对无线通信流量的精准预测。在实际蜂窝数据集上与现有模型进行预测误差的对比,结果表明MST-DenseNet具有更高的预测精度。
Precise prediction of wireless communication network traffic can assist operators in fine-tuned operations to efficiently allocate and deploy base station resources,and cater to a large number of emerging business needs.However,the highly complex temporal-spatial dependence and the influence of multi-source and cross-domain factors make accurate prediction of wireless communication traffic face huge challenges.Firstly,the correlation analysis of wireless communication traffic from temporal,spatial,social and natural attributes shows that wireless communication traffic has multi-source and cross-domain characteristics.Secondly,this paper proposes an improved dense fully connected network model MST-DenseNet.The model uses the convolution operation of a single DenseUnit structure to capture the spatial correlation of traffic,and uses multiple parallel DenseUnit structures to capture the temporal correlation of traffic on different scales.At the same time,considering the impact of cross-domain dataset on wireless traffic,this model integrates the temporal and spatial characteristics of communication traffic itself with the social and natural characteristics of cross-domain dataset to achieve accurate prediction of wireless communication traffic.Experiments show that,on the actual cellular dataset,MST-DenseNet has higher prediction accuracy compared with existing model.
作者
马冀
林尚静
李月颖
庄琲
贾睿
田锦
MA Ji;LIN Shang-jing;LI Yue-ying;ZHUANG Bei;JIA Rui;TIAN Jin(School of Networking and Communication Engineering,Jinling Institute of Technology,Nanjing 211169,China;School of Electronic Engineering,Beijing University of Posts and Telecommunications,Beijing 100876,China)
出处
《计算机科学》
CSCD
北大核心
2022年第S02期893-899,共7页
Computer Science
基金
国家重点研发计划(2019YFC1511400)
泛网无线通信教育部重点实验室开放基金(KFKT0-2020102)
北京邮电大学中央高校基本科研业务费新进教师人才项目(2021RC07)
关键词
无线流量预测
多源跨域
数据融合
时空依赖性
密集卷积网络
Wireless traffic prediction
Multi-source cross-domain
Data fusion
Temporal-spatial dependence
Densenet