期刊文献+

超像素图像分割算法及其应用研究进展 被引量:1

Research progress of superpixel image segmentation algorithms and their applications
在线阅读 下载PDF
导出
摘要 一直以来,视觉图像都是人们从外界获取的一种重要信息来源。图像分割是针对图像像素的颜色、空间和纹理等底层语义信息对图像进行分割。超像素图像分割以超像素块代替像素作为图像处理的基本单元,减少了后续算法的计算量。但超像素算法无法很好地兼顾实时处理和处理精度,因而提升处理效率和精度将是超像素图像分割算法需要持续研究和改进的重要任务。 Visual images have always been an important source of information for people to obtain from the outside world.Image segmentation is to segment an image based on the underlying semantic information such as color,space,and texture of image pixels.Superpixel image segmentation uses superpixel blocks instead of pixels as the basic unit of image processing,which reduces the computational complexity of subsequent algorithms.Superpixel algorithm cannot take into account real-time processing and processing accuracy well,and improving processing efficiency and accuracy will be an important task for superpixel image segmentation algorithms that need continuous research and improvement.
作者 方堃 谢淑丽 齐微微 王伯燕 王锐 姚青 FANG Kun;XIE Shuli;QI Weiwei;WANG Boyan;WANG Rui;YAO Qing(Ningbo FOTILE Kitchenware Co.,Ltd.,Ningbo 315336;Key Laboratory of Healthy&Intelligent Kitchen System Integration of Zhejiang Province,Ningbo 315336;CHEARI(Beijing)Certification&Testing Co.,Ltd.,Beijing 100176)
出处 《家电科技》 2022年第S01期604-607,共4页 Journal of Appliance Science & Technology
关键词 超像素 图像分割 遥感影像 智能家电 Superpixel Image segmentation Remote sensing image Smart appliances
  • 相关文献

参考文献7

二级参考文献185

  • 1苏金玲,王朝晖.基于Graph Cut和超像素的自然场景显著对象分割方法[J].苏州大学学报(自然科学版),2012,28(2):27-33. 被引量:7
  • 2Ren X, Malik J. Learning a classification model for segmentation [ C]//Proceedings of the IEEE International Conference on Com- puter Vision. Washington DC, USA: IEEE, 2003: 10-17. [ DOI: 10. 1109/ICCV. 2003. 1238308 ].
  • 3Achanta R, Shaji A, Smith K, et al. SLIC superpixels compared to state-of-the-art superpixel methods[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34 ( 11 ) : 2274-2282. [DOI: 10. 1109/TPAMI. 2012. 120].
  • 4Xu C, Corso J J. Evaluation of super-voxel methods for early vid- eo processing[ C ]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington DC, USA: IEEE, 2012 : 1202-1209. [DOI : 10. 1109/CVPR. 2012. 6247802 ].
  • 5Shi J, Malik ./. Normalized cuts and image segmentation [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8): 888-905. [DOI: 10. 1109/34. 868688].
  • 6Moore A P, Prince S, Warrell J, et al. Superpixel lattices[ C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington DC, USA : IEEE, 2008 : 1-8. [ DOI: 10. 1109/CVPR. 2008. 4587471 ].
  • 7Veksler O, Boykov Y, Mehrani P. Superpixels and supervoxels in an energy optimization framework [ M ]//Computer Vision-EC- CV 2010. Berlin Heidelberg: Springer, 2010: 211-224. [DOI: 10. 1007/978-3-642-15555-0_16 ].
  • 8Achanta R, Shaji A, Smith K, et al. Slic superpixels[ R]. Lau- sanne, Vaud, Switzerland: Swiss federal Institute of Technology, 2010.
  • 9Liu M Y, Tuzel O, Ramalingam S, et al. Entropy rate superpixel segmentation[ C ]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington DC, USA : IEEE, 2011 : 209/-2104. [DOI: 10. 1109/CVPR.2011. 5995323].
  • 10Zhang Y, Hartley R, Mashford J, et al. Superpixels via pseudo-boolean optimization [ C ]//Proceedings of IEEE International Conference on Computer Vision. Washington DC, USA: IEEE, 2011 : 1387-1394. [DOI : 10. 1109/ICCV. 2011. 6126393 ].

共引文献2026

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部