期刊文献+

基于改进集成学习的交直流配电系统短期负荷预测方法 被引量:1

Short-term Load Forecasting Method for AC/DC Distribution System Based on Ensemble Learning
在线阅读 下载PDF
导出
摘要 交直流(AC/DC)配电系统中的负荷类型更加多样化和复杂化,因此负荷变化规律也更加难以掌握,精确的负荷预测对AC/DC配电系统的调度非常重要。针对神经网络、灰色理论和支持向量机等传统的短期负荷预测方法存在的预测精度不高的问题,本文采用改进集成学习算法对传统的预测方法进行改进,提出了一种基于浅层神经网络的梯度提升算法(GBSNN)以及基于长短期记忆网络的极度梯度提升(XGBLSTM)算法。同时,本文采用Huber函数作为预测模型的损失函数,该函数对异常的负荷数据具有很强的鲁棒性,可以有效减小模型的泛化误差。最后通过仿真分析证明本文提出的基于GBSNN和XGBLSTM的短期负荷预测方法比其他方法具有更高的预测精度,在AC/DC配电系统负荷预测中具有更好的效果。 There are more diverse types of loads in an AC/DC distribution system,so it is much more difficult to grasp the change rules.Accurate load forecasting is of great significance for the optimal scheduling of AC/DC distribution system.Aiming at the precision problem of traditional short-term load forecasting methods,such as neural network,grey theory and support vector machine,this study uses the ensemble learning to improve the traditional forecasting methods,and proposes a gradient boosting method based on shallow neural network(GBSNN)as a base learner.Meanwhile,by using the Huber function as the loss function,it is robust to abnormal load data and can reduce the generalization error.Through simulation results and comparison analysis,the proposed short-term load forecasting method based on GBSNN has higher precision than other methods and better performance in load forecasting of AC/DC distribution system.
作者 姜世公 王云飞 吴志力 崔凯 陈庆 Jiang Shigong;Wang Yunfei;Wu Zhili;Cui Kai;Chen Qing(State Grid Economic and Technological Research Institute Co.,Ltd,Beijing 102209,China)
出处 《科技通报》 2021年第7期68-73,79,共7页 Bulletin of Science and Technology
基金 国家重点研发计划项目(2018YFB0904700)
关键词 负荷预测 AC/DC配电系统 集成学习 浅层神经网络 load forecasting AC/DC hybrid distribution System ensemble learning shallow neural network
  • 相关文献

参考文献6

二级参考文献66

  • 1梁海峰,李庚银,李广凯,张凯,周明.向无源网络供电的VSC–HVDC系统仿真研究[J].电网技术,2005,29(8):45-50. 被引量:96
  • 2马玉龙,肖湘宁,姜旭.交流系统接地故障对HVDC的影响分析[J].中国电机工程学报,2006,26(11):144-149. 被引量:96
  • 3Guang-Bin Huang,Qin-Yu Zhu,Chee-Kheong Siew.Extreme learning machine: Theory and applications[J]. Neurocomputing . 2006 (1)
  • 4De Silva D,Yu X,Alahakoon D,et al.Incremental pattern characterization learning and forecasting for electricity consumption using smart meters. IEEE International Symposium on Industrial Electronics (ISIE) . 2011
  • 5Ghofrani M,Hassanzadeh M,Etezadi-Amoli M,et al.Smart meter based short-term load forecasting for residential customers. North American Power Symposium (NAPS) . 2011
  • 6Huang, Guang-Bin,Wang, Dian Hui,Lan, Yuan.Extreme learning machines: A survey. International Journal of Machine Learning and Cybernetics . 2011
  • 7Nizar, A.H.,Dong, Z.Y.,Wang, Y.Power Utility Nontechnical Loss Analysis With Extreme Learning Machine Method. Power Systems, IEEE Transactions on . 2008
  • 8Amjady, Nima,Keynia, Farshid,Zareipour, Hamidreza.Short-term load forecast of microgrids by a new bilevel prediction strategy. IEEE Transactions on Smart Grid . 2010
  • 9Guang-Bin Huang,Hongming Zhou,Xiaojian Ding.Extreme Learning Machine for Regression and Multiclass Classification. IEEE Transactions on Systems Man and Cybernetics . 2012
  • 10Serre D.Matrices:theory and applications. . 2010

共引文献123

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部