期刊文献+

基于R2指标的昂贵多目标进化算法 被引量:12

Expensive multi-objective optimization algorithm based on R2 indicator
原文传递
导出
摘要 提出一种基于R2指标的昂贵多目标进化(R2-EMO)算法.为了解决精确数学模型难以获得以及评估实验成本高昂的昂贵多目标优化问题,R2-EMO算法采用高斯过程取代真实模型来评估个体在每个目标上的性能,并设计一种新的R2指标的效用函数,该效用函数根据高斯过程的输出计算个体的R2指标.带有新的效用函数的R2指标在选择评估点时,既考虑了种群个体的收敛性和多样性,还考虑了个体的预测期望值和预测均方误差,增强了种群个体对目标空间的勘探能力.同时,提出双层档案管理策略,采用两个档案分别存放评估过的非支配个体和建立代理模型的个体,并在每次迭代中对两个档案进行更新.实验结果表明,与已有的4种算法相比,R2-EMO算法在处理昂贵多目标进化算法时,收敛性和多样性均优于其他算法,并能以较快的速度收敛到Pareto前沿. In order to solve the expensive multi-objective optimization problems,whose accurate mathematical models are difficult to obtain and which have high experimental cost in evaluation experiments,an expensive multi-objective evolutionary algorithm based on the R2 indicator(R2-EMO)is proposed,which uses the Gaussian process to replace the real model to evaluate the performance of the individual by calculating the R2 indicator.In selecting the evaluation points,the R2 indicator considers the convergence and the diversity of population.And it takes the expectation and mean square error into account,which strengthens the ability of exploration.Meanwhile,a double-archive management strategy is carried out and updated in each iteration.One is used to store the non-dominated individuals and the other is used to build the surrogate process.Compared with the ParEGO,KRVEA,MOEAD and NSGAⅢ,R2-EMO algorithm has achieved a better performance and can converge to the Pareto front rapidly in dealing with expensive multi-objective optimization problems.
作者 刘建昌 赵阳杰 李飞 宋悦熙 LIU Jian-chang;ZHAO Yang-jie;LI Fei;SONG Yue-xi(College of Information Science and Engineering,Northeastern University,Shenyang 110004,China;School of Electrical and Information Engineering,Anhui University Technology,Maanshan 243032,China)
出处 《控制与决策》 EI CSCD 北大核心 2020年第4期823-832,共10页 Control and Decision
基金 国家自然科学基金项目(61773106) 安徽省高校自然科学研究项目(KJ2019A0051).
关键词 昂贵多目标进化算法 R2指标 高斯过程 双层档案管理策略 expensive multi-objective evolutionary algorithm R2 indicator Gaussian process double-archive management strategy
  • 相关文献

参考文献1

二级参考文献3

共引文献52

同被引文献38

引证文献12

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部