期刊文献+

人脸识别反欺诈研究进展 被引量:7

Research Progress of Face Recognition Anti-spoofing
在线阅读 下载PDF
导出
摘要 当前,人脸识别理论和技术取得了巨大的成功,被广泛应用于政府、金融和军事等关键领域.与其他信息系统类似,人脸识别系统也面临着各类安全问题,其中,人脸欺诈(face spoofing,FS)是最主要的安全问题之一.所谓的人脸欺诈,是指攻击者采用打印照片、视频回放和3D面具等攻击方式,诱骗人脸识别系统做出错误判断,因而是人脸识别系统所必须解决的关键问题.对人脸反欺诈(face anti-spoofing,FAS)的最新进展进行研究:首先,概述了FAS的基本概念;其次,介绍了当前FAS所面临的主要科学问题以及主要的解决方法及其优缺点;在此基础上,将已有的FAS工作分为传统方法和深度学习方法两大类,并分别进行详细论述;接着,针对基于深度学习的FAS域泛化和可解释性问题,从理论和实践的角度进行说明;然后,介绍了FAS研究所使用的典型数据集及其特点,并给出了FAS算法的评估标准和实验对比结果;最后,总结了FAS未来的研究方向并对发展趋势进行展望. Currently,face recognition theory and technology have achieved great success,and face recognition systems have been widely deployed in key fields such as government,finance,military,etc.Similar to other information systems,face recognition systems also face various security issues,among which,face spoofing is one of the most important issues.The so-called face spoofing refers to the use of attack methods such as printing photos,video re-play,and 3D masks to trick the face recognition system into making false decisions,and thus it must be addressed by a face recognition system.The recent progress of face anti-spoofing(FAS)is investigated.Initially,FAS-related concepts are outlined.Then,the main scientific problems of FAS and corresponding solutions,including the advantages and disadvantages of these solutions,are introduced.Next,existing FAS approaches are divided into two folds,i.e.,traditional approaches and deep learning-based approaches,and they are depicted in detail,respectively.Moreover,regarding the domain generalization and interpretability issues of deep learning-based FAS,a detailed introduction is given from the perspective of theory and practice.Then,mainstream datasets adopted by FAS are discussed,and evaluation criteria and experimental results based on these datasets are explained as well.Finally,the future research directions are discussed and concluded.
作者 张帆 赵世坤 袁操 陈伟 刘小丽 赵涵捷 ZHANG Fan;ZHAO Shi-Kun;YUAN Cao;CHEN Wei;LIU Xiao-Li;CHAO Han-Chieh(School of Mathematics and Computer Science,Wuhan Polytechnic University,Wuhan 430023,China;School of Computer Science,Nanjing University of Posts and Telecommunications,Nanjing 210023,China;College of Information Science and Technology,Jinan University,Guangzhou 510632,China;College of Cyber Security,Jinan University,Guangzhou 510632,China;Department of Electrical Engineering,Dong Hwa University,Hualien 08153719,China)
出处 《软件学报》 EI CSCD 北大核心 2022年第7期2411-2446,共36页 Journal of Software
基金 国家重点研发计划(2019YFB2101704) 国家自然科学基金(61906140) 湖北省自然科学基金(2020CFB761) 武汉轻工大学科研项目(2021Y38)
关键词 人脸反欺诈 呈现攻击检测 人脸识别安全 深度学习 域泛化 可解释性 face anti-spoofing(FAS) presentation attack detection face recognition security deep learning domain generalization interpretability
  • 相关文献

参考文献1

二级参考文献5

共引文献47

同被引文献48

引证文献7

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部