期刊文献+

改进多目标量子粒子群算法的WSN覆盖及能耗均衡 被引量:6

WSN Coverage and Energy Consumption Balance Using Improved Multi-Objective Quantum Particle Swarm Optimization
原文传递
导出
摘要 为了使无线传感器网络的覆盖率和能耗达到最优的效果,提出了一种改进的多目标粒子群优化算法,采用量子粒子群优化更新粒子,利用拥挤距离排序策略,并结合适应度函数值优劣特性对多目标矛盾的性能目标选择,同时通过拥挤距离对加速系数自适应调整提高算法搜索能力,得到了逼近真实前沿的Pareto解集,具有更快的收敛速度和更强的寻优能力.通过对比实验结果表明:提出的算法在解决WSN的多目标优化问题时,能够避免算法陷入局部最优解,更好地平衡网络覆盖和动态通信能耗,使整个网络的综合指数达到了6.249,均明显优于其他三种算法. In order to optimize the coverage and energy consumption of wireless sensor networks,an improved multi-objective particle swarm optimization algorithm was proposed.The quantum particle swarm optimization was used to update the particles,and the performance objectives of multi-objective contradictions were selected using congestion distance ranking strategy and fitness nction value features,meanwhile,the acceleration coefficient was adaptively adjusted to improve the search ability of algorithm by congestion distance.The Pareto solution set closed to the real frontier was obtained,which had faster convergence speed and stronger searching ability.The contrast experiment results show that the proposed algorithm can avoid falling into local optimum solution,balance network coverage and dynamic communication energy consumption better,and make the comprehensive index of the whole network reach 6.249,which is obviously superior to the other three algorithms.
作者 程春 CHENG Chun(School of Information Engineering,Henan Mechanical and Electrical Vocational College,Zhengzhou 451191,China)
出处 《数学的实践与认识》 北大核心 2020年第4期154-161,共8页 Mathematics in Practice and Theory
关键词 无线传感器网络 量子粒子群优化 多目标优化 网络覆盖 动态通信能耗 拥挤距离 wireless sensor networks quantum particle swarm optimization multi-objective optimization network coverage dynamic communication energy consumption congestion distance
  • 相关文献

参考文献16

二级参考文献98

共引文献239

同被引文献62

引证文献6

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部