摘要
以钨粉(W)和双氧水(H2O2)为原料,通过液相合成法制备前驱体粉末后,采用刮刀涂布工艺制备了具有高光电化学(PEC)水氧化效率的WO3光阳极。并利用X射线衍射、拉曼光谱分析并结合热分析法研究煅烧温度对纳米WO3的晶型和晶粒直径的影响。结果表明,煅烧温度为400℃时可制备单斜相WO3,且WO3的晶粒直径随温度升高而增大。扫描电镜分析结果表明,制备的WO3颗粒尺寸约为20~70 nm。环伏安测试结果表明,WO3-600光阳极的光电流达到1.88 m A/cm2,是WO3-400的2.65倍。入射光子-电流转换效率(IPCE)说明WO3光阳极的起始波长为470 nm。Co2+的添加大幅提升了PEC分解水的催化活性和稳定性。
Tungsten oxide(WO3)photoanode for highly efficient photoelectrochemical(PEC)oxidation of water is prepared by a facile and simple doctor-blading technique utilizing a precursor that is synthesized from tungsten powder and hydrogen peroxide(H2O2)via liquid phase synthesis method.XRD,Raman and thermal analysis instruments of TGDTA are used to investigate the effect of calcination temperature on crystal structure and crystallite diameter of the nanoWO3.It is found that monoclinic WO3 crystals can be obtained from the precursor via calcination above 400 oC,and the crystallite diameter of nano-WO3 increases with the increasing calcination temperature.SEM images prove that WO3 particles have a diameter between 20 nm and 70 nm.Cyclic voltammetry results indicate WO3-600 photoanode can generate a photoanodic current density of 1.88 m A·cm-2 at 1.0 V versus Ag/Ag Cl under visible light irradiation,which is about 2.65 times that of WO3-400.IPCE results show WO3-600 photoanode starts to generate photocurrent on illumination of visible light below 470 nm.The photoanodic current and photostability of WO3 photoanode are improved due to addition of Co2+ions in the electrolyte solution during PEC decomposition of water.
作者
李东
高彩云
LI Dong;GAO Cai-yun(College of Materials Science and Engineering,North Minzu University,Yinchuan 750021,China;Chemical Science and Engineering College,North Minzu University,Yinchuan 750021,China)
出处
《现代化工》
CAS
CSCD
北大核心
2020年第3期147-151,共5页
Modern Chemical Industry
基金
宁夏自然科学基金(NZ17095)
宁夏自然科学基金(2019AAC03112)
北方民族大学2019年重点科研项目(2019KJ02)
北方民族大学中央高校基本科研业务费专项资金资助(2018XYZCL01)
北方民族大学电化学能源转化技术开发和应用重点实验室课题资助(2018KLEA03).
关键词
纳米三氧化钨
水氧化
光阳极
光电化学分解水
nano-WO3
oxidation of water
photoanode
photoelectrochemical decomposition of water