期刊文献+

基于演化博弈的网络信息体系资源优选 被引量:1

Resource Optimization of Network Information-centric System of Systems Based on Evolutionary Game
在线阅读 下载PDF
导出
摘要 网络信息体系是我军构建的新一代指挥控制作战体系,具有动态应对任务和环境变化的优势,通过对全网作战资源实施优选,实现作战效能最大化.随着人工智能等技术的发展,当前主要依靠预案实施的优选方法无法适应智能、无人设备自进化,且对战场态势覆盖不足.针对上述缺陷,本文以防空反导作战体系为例,研究在物理节点损毁的情况下的资源集成方案求解问题,采用down-selection模式将资源集成方案求解问题转化为组合优化问题,通过增加扰动限制改进了演化初始策略形成机制,提出了基于演化博弈的资源优选方法.方法在Netlogo平台上进行了仿真,验证了有效性,且对比基于遗传算法的资源优选方法,所求的方案任务完成度平均提高6.4%. The network information-centric system of systems(SoS)is a new generation of command-and-control operational SoS proposed by the PLA,which has the advantage of dynamic response to missions and environmental changes.It optimizes the operational resources of the whole network to maximize operational effectiveness.With the development of artificial intelligence and other technologies,the current optimization method,which mainly depends on the implementation of plans,can neither adapt to the self-evolution of intelligent and unmanned equipment nor cover the battlefield dynamics.Considering the above defects,this study takes the air and missile defense operational SoS as an example to study the solution to the resource integration scheme in the case of physical node damage.The down-selection model is adopted to transform the solution to the resource integration scheme into a combinatorial optimization problem,and the formation mechanism of initial evolutionary strategy is improved by adding disturbance restrictions.Thus,a resource optimization method based on the evolutionary game is proposed.The effectiveness of the method is verified by simulations on the Netlogo platform.Compared with the result of the resource optimization method based on the genetic algorithm,the task completion of the solution by the proposed method is increased by 6.4%on average.
作者 王楠 张婷婷 左毅 陈镜 WANG Nan;ZHANG Ting-Ting;ZUO Yi;CHEN Jing(Command&Control Engineering College,Army Engineering University of PLA,Nanjing 210007,China;Key Lab of Information System Requirement,Nanjing 210007,China;The 54th Research Institute of China Electronics Technology Group Corporation,Shijiazhuang 050081,China)
出处 《计算机系统应用》 2022年第12期359-367,共9页 Computer Systems & Applications
基金 国家自然科学基金青年项目(61802428) 军委科技委基础加强计划技术领域基金(2019-JCJQ-JJ-014)
关键词 网络信息体系 演化博弈 资源优选算法 扰动限制 network information-centric system of systems(SoS) evolutionary game resource optimization algorithm disturbance limits
分类号 E91 [军事]
  • 相关文献

参考文献10

二级参考文献66

  • 1吕建,马晓星,陶先平,徐锋,胡昊.网构软件的研究与进展[J].中国科学(E辑),2006,36(10):1037-1080. 被引量:101
  • 2刑文训 谢金星.现代化计算方法[M].北京:清华大学出版社,1999..
  • 3李国勇等.智能控制及其MATLAB实现[M].北京:电子工业出版社,2004.
  • 4Holland J.H. Adaption in Nature and Artificial System. MIT Press, 1991
  • 5曾建潮,介婧,崔志华编著.微粒群算法[M].北京:科学出版社,200
  • 6周明 孙树栋.遗传算法原理及其应用[M].北京:国防工业出版社,1996..
  • 7DeJong K A. An Analysis of the Behavior of a Class of Gene tic Adaptive Systems[J]. Dissertation Abstracts International,1975(10).
  • 8Back T,Schwefel H P. An Over View of Evolutionary Algorithms for Parameter Optimization[J]. Evolutionary Computation,1993(1).
  • 9Hollstien R B. Artificial Genetic Adaptationin Computer Control Systems[J ]. Dissertation Abstracts International,1971(3).
  • 10Colorni A. Dorigo M,Maniezzo V. Distributed Ptimization by Ant Colonies[ C]. Proc of 1st European Conf. Artificial Life. Pans,France: Elsevier,1991.

共引文献153

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部