期刊文献+

基于多因素耦合改进的LSTM道路交通流量预测方法及应用 被引量:1

原文传递
导出
摘要 道路交通流量预测对道路规划、建设、运营具有重要意义,但受交通系统复杂性、混沌性影响其预测精准度不高,提高道路交通流量预测精度是业界研究重点。基于长短期记忆网络模型(LSTM-Model)提出了一种多因素耦合的中期道路交通流量预测方法,提取外部常规因素、非常规因素特征并利用独热编码将离散影响特征数字化,验证了收费道路车流时间序列复杂变化与多因素耦合性,并以广州市广和大桥为例进行分析。实验结果表明,多因素耦合改进的LSTM预测模型,能够适应于实际运行道路复杂条件,有效减小中期交通流预测误差,提高预测准确率。
出处 《运输经理世界》 2022年第33期68-70,共3页 Transport Business China
  • 相关文献

参考文献2

二级参考文献15

  • 1郑为中,史其信.基于贝叶斯组合模型的短期交通量预测研究[J].中国公路学报,2005,18(1):85-89. 被引量:47
  • 2Okutani I, Stephanedes Y J. Dynamic prediction of traffic volume through Kalman filtering theory [ J ]. Transportation Research Part B: Methodological,1984,18(1) : 1 -11.
  • 3Castro-Neto M,Jeong Y-S,Jeong M-K,et al. Online-SVR for short-te~ traffic flow prediction under typical and atypical traffic conditions [ J ]. Expert Systems with Applications, 200c)~36(3 ) :6164 - 6173.
  • 4Hong W C, Dong Y C, Zheng F F, et al. Forecasting urban traffic flow by SVR with continuous ACO [ J ]. Applied Math- ematical Modelling,2011,35 (3) : 1282 - 1291.
  • 5Vlahogianni E I, Karlaftis M G, Golias J C. Optimized and meta-optimized neural networks for short-term traffic flow prediction : A genetic approach[ J]. Transportation Research Part C : Emerging Technologies ,2005,13 (3) :211 - 234.
  • 6Lee S, Fambro D B. Application of subset autoregressive in- tegrated moving average model for short-term freeway traffic volume forecasting [ C ]//Transportation Research Record. Washington DC, 1999 : 179 - 188.
  • 7Lu Jianchang, Niu Dongxiao, Jia Zhengyuan. A study of short-term load forecasting based on ARIMA-ANN [ J ]. Ma- chine Learning and Cybernetics,2004 (5) : 3183 - 3187.
  • 8William B M. Modeling and forecasting vehicular traffic flow as a seasonal stochastic time series process [ D ]. Charlottes- ville : University of Virginia, 1999.
  • 9Williams B M, Hoel L A. Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process:A theoretical basis and empirical results [ J ]. Journal of Transportation Engi- neering,2003,129(6) :664 - 672.
  • 10薛洁妮,史忠科.基于混沌时间序列分析法的短时交通流预测研究[J].交通运输系统工程与信息,2008,8(5):68-72. 被引量:47

共引文献34

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部