期刊文献+

基于实时图像反馈的能量高均匀性多光束加工技术研究 被引量:6

Research on Multi-beam Machining Technology with High Energy Uniformity Based on Real-time Image Feedback
原文传递
导出
摘要 针对传统GS算法在计算阵列多光束全息图时,光束均匀性往往只能达到70%左右,达不到激光并行微加工领域需求的问题,提出并实现了基于实时图像反馈的GS改进算法。本文分析了计算傅里叶全息图原理并介绍了GS反馈算法,将该算法产生的阵列光束图样的相位全息图加载到纯相位液晶空间光调制器上,在远场成功地再现了期望图样,且光束均匀性均在91%以上,证明了算法的有效性。该算法实现了任意尤其是阵列位置多光束的高均匀性,在并行微加工领域有重要意义。 In order to solve the problem that the beam energy uniformity of the traditional GS algorithm can only reach about 70%when it is used to calculate the array multi-beam hologram,which can not meet the requirements of the laser parallel processing field,an improved GS algorithm based on real-time image feedback is proposed.In this paper,the principle of CGH is analyzed and the GS feedback algorithm is introduced.The phase hologram of the array beam pattern generated by the algorithm is loaded on the pure phase liquid crystal spatial light modulator,and the desired pattern is successfully reproduced in the far field,and the beam energy uniformity is more than 91%.The validity of the algorithm is proved.This algorithm realizes the high energy uniformity of multi-beam at any position,especially at the array position,which is of great significance in the field of parallel machining.
作者 翟中生 刘愿 汪于涛 王丽 刘顿 操文泽 伍义刚 Zhai Zhongsheng;Liu Yuan;Wang Yutao;Wang Li;Liu Dun;Cao Wenze;Wu Yigang(School of Mechanical Engineering,Hubei University of Technology,Wuhan,Hubei 430068,China;Hubei Key Lab of Manufacture Quality Engineering,Wuhan,Hubei 430068,China;Shanghai Keylab of Laser Beam Micro Processing,Shanghai Institute of Laser Technology,Shanghai 200233,China)
出处 《应用激光》 CSCD 北大核心 2020年第5期884-889,共6页 Applied Laser
基金 上海市科委科研计划资助项目(项目编号:19511130400)
关键词 多光束 SLM 计算全息图 并行加工 GS算法 multi-beam SLM computer hologram parallel processing GS algorithm
  • 相关文献

参考文献7

二级参考文献132

  • 1张文静,庄礼辉,李银妹,楼立人.非接触光镊法研究混合液体黏滞系数的组分关系[J].应用激光,2006,26(4):257-260. 被引量:2
  • 2国家自然科学基金委员会. 重大研究项目“纳米制造的基础研究”2009年度项目指南[OL]. 2011-05-10, http:∥www.nsfc.gov.cn/nsfc/cen/yjjhnew/20090121_03.htm.
  • 3国家自然科学基金委员会工程与材料科学部. 机械工程学科发展战略报告: 2011-2020[M]. 北京:科学出版社,2010.
  • 4D. Buerle. Laser Processing and Chemistry[M]. 3rd ed., Berlin: Springer, 2000.
  • 5A. Chimmalgi, T. Y. Choi, C. P. Grigoropoulos et al.. Femtosecond laser aperturless near-field nanomachining of metals assisted by scanning probe microscopy[J]. Appl. Phys. Lett., 2003, 82(8): 1146-1148.
  • 6T. Tanaka, H. B. Sun, S. Kawata. Rapid sub-diffraction-limit laser micro/nanoprocessing in a threshold material system[J]. Appl. Phys. Lett., 2002, 80(2): 312-314.
  • 7J. D. Boor, D. K. Kim, V. Schmidt. Sub-50 nm patterning by immersion interference lithography using a Littrow prism as a Lloyd′s interferometer[J]. Opt. Lett., 2010, 35(20): 3450-3452.
  • 8M. C. Marconi, P. C. Wachulak. Extreme ultraviolet lithography with table top lasers[J]. Progress Quantum Electron., 2010, 34(4): 173-190.
  • 9C. S. Lim, M. H. Hong, Y. Lin et al.. Microlens array fabrication by laser interference lithography for superresolution nano patterning[J]. Appl. Phys. Lett., 2006, 89(19): 191125.
  • 10S. C. Lo, H. N. Wang. Near-field photolithography by a fibre probe[C]. Maui: Proceedings of 1st IEEE Conference on Nanotechnology, 2001. 36-39.

共引文献57

同被引文献39

引证文献6

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部