The 0.8 Me V copper ( Cu) ion beam irradiation-induced effects on structural, morphological and optical properties of tin dioxide nanowires (Sn02 NWs) are investigated. The samples are irradiated at three differen...The 0.8 Me V copper ( Cu) ion beam irradiation-induced effects on structural, morphological and optical properties of tin dioxide nanowires (Sn02 NWs) are investigated. The samples are irradiated at three different doses 5 × 10^12 ions/cm2, 1 ×10^13 ions/cm2 and 5 × 10^13 ions/em2 at room temperature. The XRD analysis shows that the tetragonal phase of Sn02 NWs remains stable after Cu ion irradiation, but with increasing irradiation dose level the crystal size increases due to ion beam induced coalescence of NWs. The FTIR spectra of pristine Sn02 NWs exhibit the chemical composition of SnO2 while the Cn-O bond is also observed in the FTIR spectra after Cu ion beam irradiation. The presence of Cu impurity in SnO2 is further confirmed by calculating the stopping range of Cu ions by using TRM/SRIM code. Optical properties of SnO2 NWs are studied before and after Cu ion irradiation. Band gap analysis reveMs that the band gap of irradiated samples is found to decrease compared with the pristine sample. Therefore, ion beam irradiation is a promising technology for nanoengineering and band gap tailoring.展开更多
Stripper gas and terminal potential play a key role for the charge state distribution in a tandem pelletron accelerator. The knowledge of this distribution is important for experiments performed on tandem accelerators...Stripper gas and terminal potential play a key role for the charge state distribution in a tandem pelletron accelerator. The knowledge of this distribution is important for experiments performed on tandem accelerators. The charge state distribution of B, C, Si, Ni, Cu and Au beams is measured by using Ar as stripper gas, and terminal potential is varied from 0.3 to 3.0 MV on 5UDH-2 tandem pelletron accelerator installed at the National Centre for Physics, Islamabad. The individual charge state is measured after the switching magnet at 15° in high-energy portion. It is observed that the higher charge states are stable in the range of lower and middle atomic masses of periodic table, whereas higher atomic mass(Au) shows beam current instability in higher charge states. For carbon,the charge distribution at 1.7 MV terminal potential by varying stripper gas pressure is also studied, which resulted in decreased overall transmission with good current value for higher charge states.展开更多
Measurement of differential elastic cross section of protons from aluminum was taken at 165° degree in the2.4–4.8 Me V energy range. The results and measured energy resonances were compared with reported measure...Measurement of differential elastic cross section of protons from aluminum was taken at 165° degree in the2.4–4.8 Me V energy range. The results and measured energy resonances were compared with reported measurements.These data will improve the reliability of backscattering analysis of Al with protons in this energy region.展开更多
A random two-dimensional large scale nano-network of silver nanowires (Ag-NWs) is fabricated by MeV hydrogen (H+) ion beam irradiation. Ag-NWs are irradiated under H+ ion beam at different ion fluences at room t...A random two-dimensional large scale nano-network of silver nanowires (Ag-NWs) is fabricated by MeV hydrogen (H+) ion beam irradiation. Ag-NWs are irradiated under H+ ion beam at different ion fluences at room temperature. The Ag-NW network is fabricated by H+ ion beam-induced welding of Ag-NWs at intersecting positions. H+ ion beam induced welding is confirmed by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Moreover, the structure of Ag NWs remains stable under H+ ion beam, and networks are optically transparent. Morphology also remains stable under H+ ion beam irradiation. No slicings or cuttings of Ag-NWs are observed under MeV H+ ion beam irradiation. The results exhibit that the formation of Ag-NW network proceeds through three steps: ion beam induced thermal spikes lead to the local heating of Ag-NWs, the formation of simple junctions on small scale, and the formation of a large scale network. This observation is useful for using Ag-NWs based devices in upper space where protons are abandoned in an energy range from MeV to GeV. This high-quality Ag-NW network can also be used as a transparent electrode for optoelectronics devices.展开更多
Amorphous silver nanowires (a-Ag NWs) are fabricated from crystalline Ag NWs by using 5 MeV helium (He+) ion beam irradiation. At low dose (5 × 1015 ion/cm2), few defects are created in Ag NWs. As dose inc...Amorphous silver nanowires (a-Ag NWs) are fabricated from crystalline Ag NWs by using 5 MeV helium (He+) ion beam irradiation. At low dose (5 × 1015 ion/cm2), few defects are created in Ag NWs. As dose increases, more damage to the crystalline structure of Ag NWs is observed. Finally at high dose (8 × 1016 ion/cm2), the face-centered cubic structure of Ag NWs is transformed into the amorphous structure with similar morphology as Ag NWs. Phase transformation of crystalline Ag NWs upon irradiation with 5 MeV He+ ions is observed through high resolution transmission electron microscopy. Synthesis of large scale amorphous metal nanowires and metal nanowire alloy systems are discussed.展开更多
基金Supported by the Department of Physics,the University of AJKHigh Tech.Centralized Instrumentation Lab,the University of AJK,Pakistanthe Experimental Physics Division,and the National Center for Physics,Islamabad Pakistan
文摘The 0.8 Me V copper ( Cu) ion beam irradiation-induced effects on structural, morphological and optical properties of tin dioxide nanowires (Sn02 NWs) are investigated. The samples are irradiated at three different doses 5 × 10^12 ions/cm2, 1 ×10^13 ions/cm2 and 5 × 10^13 ions/em2 at room temperature. The XRD analysis shows that the tetragonal phase of Sn02 NWs remains stable after Cu ion irradiation, but with increasing irradiation dose level the crystal size increases due to ion beam induced coalescence of NWs. The FTIR spectra of pristine Sn02 NWs exhibit the chemical composition of SnO2 while the Cn-O bond is also observed in the FTIR spectra after Cu ion beam irradiation. The presence of Cu impurity in SnO2 is further confirmed by calculating the stopping range of Cu ions by using TRM/SRIM code. Optical properties of SnO2 NWs are studied before and after Cu ion irradiation. Band gap analysis reveMs that the band gap of irradiated samples is found to decrease compared with the pristine sample. Therefore, ion beam irradiation is a promising technology for nanoengineering and band gap tailoring.
文摘Stripper gas and terminal potential play a key role for the charge state distribution in a tandem pelletron accelerator. The knowledge of this distribution is important for experiments performed on tandem accelerators. The charge state distribution of B, C, Si, Ni, Cu and Au beams is measured by using Ar as stripper gas, and terminal potential is varied from 0.3 to 3.0 MV on 5UDH-2 tandem pelletron accelerator installed at the National Centre for Physics, Islamabad. The individual charge state is measured after the switching magnet at 15° in high-energy portion. It is observed that the higher charge states are stable in the range of lower and middle atomic masses of periodic table, whereas higher atomic mass(Au) shows beam current instability in higher charge states. For carbon,the charge distribution at 1.7 MV terminal potential by varying stripper gas pressure is also studied, which resulted in decreased overall transmission with good current value for higher charge states.
文摘Measurement of differential elastic cross section of protons from aluminum was taken at 165° degree in the2.4–4.8 Me V energy range. The results and measured energy resonances were compared with reported measurements.These data will improve the reliability of backscattering analysis of Al with protons in this energy region.
基金supported by the National Research Foundation of South Africa(NRF),the French Centre National pour la Recherche Scientifique,iThemba-LABS,the UNESCO-UNISA Africa Chair in Nanosciences & Nanotechnology,the Third World Academy of Science(TWAS),Organization of Women in Science for the Developing World(OWSDW),the Abdus Salam ICTP via the Nanosciences African Network(NANOAFNET),and the Higher Education Commission(HEC)of Pakistan
文摘A random two-dimensional large scale nano-network of silver nanowires (Ag-NWs) is fabricated by MeV hydrogen (H+) ion beam irradiation. Ag-NWs are irradiated under H+ ion beam at different ion fluences at room temperature. The Ag-NW network is fabricated by H+ ion beam-induced welding of Ag-NWs at intersecting positions. H+ ion beam induced welding is confirmed by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Moreover, the structure of Ag NWs remains stable under H+ ion beam, and networks are optically transparent. Morphology also remains stable under H+ ion beam irradiation. No slicings or cuttings of Ag-NWs are observed under MeV H+ ion beam irradiation. The results exhibit that the formation of Ag-NW network proceeds through three steps: ion beam induced thermal spikes lead to the local heating of Ag-NWs, the formation of simple junctions on small scale, and the formation of a large scale network. This observation is useful for using Ag-NWs based devices in upper space where protons are abandoned in an energy range from MeV to GeV. This high-quality Ag-NW network can also be used as a transparent electrode for optoelectronics devices.
文摘Amorphous silver nanowires (a-Ag NWs) are fabricated from crystalline Ag NWs by using 5 MeV helium (He+) ion beam irradiation. At low dose (5 × 1015 ion/cm2), few defects are created in Ag NWs. As dose increases, more damage to the crystalline structure of Ag NWs is observed. Finally at high dose (8 × 1016 ion/cm2), the face-centered cubic structure of Ag NWs is transformed into the amorphous structure with similar morphology as Ag NWs. Phase transformation of crystalline Ag NWs upon irradiation with 5 MeV He+ ions is observed through high resolution transmission electron microscopy. Synthesis of large scale amorphous metal nanowires and metal nanowire alloy systems are discussed.