期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Origin and evolution of ore-forming fluid for the Gaosongshan gold deposit, Lesser Xing’an Range:Evidence from fluid inclusions,H-O-S-Pb isotopes 被引量:4
1
作者 Yang Liu Jinggui Sun +4 位作者 Jilong Han Liang Ren Alei Gu Keqiang Zhao Changshen Wang 《Geoscience Frontiers》 SCIE CAS CSCD 2019年第5期1961-1980,共20页
Epithermal gold deposits are typical precious metal deposits related to volcanic and subvolcanic magmatism.Due to the lack of direct geological and petrographic evidences,the origin of the ore-forming fluid is deduced... Epithermal gold deposits are typical precious metal deposits related to volcanic and subvolcanic magmatism.Due to the lack of direct geological and petrographic evidences,the origin of the ore-forming fluid is deduced from the spatial diagenesis-mineralization relationship,chronological data,physicochemical characteristics of mineral fluid inclusions,mineral or rock elements and isotopic geochemical characteristics.By objectively examining this scientific problem via a geological field survey and petrographic analysis of the Gaosongshan epithermal gold deposit,we recently discovered and verified the following points:(1) Pyrite-bearing spherical quartz aggregates (PSQA) occur in the rhyolitic porphyry;(2) the mineralization is structurally dominated by WNW- and ENE-trending systems and occurs mostly in hydrothermal breccias and pyrite-quartz veins,and the ore types are mainly hematite-crusted quartz,hydrothermal breccia,massive pyrite-quartz,etc.;(3) the alteration types consist of prevalent silicification,sericitization,propylitization and carbonation,with local adularization and illitization.The ore minerals are mainly pyrite,primary hematite,native gold,and electrum,with lesser amounts of chalcopyrite,magnetite,sphalerite,and galena,indicating a characteristic epithermal low-sulfidation deposit.The ore-forming fluid may have been primarily derived from magmatic fluid exsolved from a crystallizing rhyolitic porphyry magma.Further zircon U-Pb geochronology,fluid inclusion,physicochemical and isotopic geochemical analyses revealed that (1) rhyolitic porphyry magmatism occurred at 104.6 ± 1.0 Ma,whereas the crystallization of the PSQA occurred at 100.8 ± 2.1 Ma;(2) the hydrothermal fluid of the pre-ore stage was an exsolved CO2-bearing H2O-NaCl magmatic fluid that produced inclusions mainly composed of pure vapor (PV),vapor-rich (WV) and liquid-rich (WL) inclusions with a small number of melt-(M) and solid-bearing (S) inclusions;mineralization-stage quartz contains WL and rare PV,WV and pure liquid (PL) inclusions characterized by the H2O-NaCl system with low formation temperatures and low salinities;(3) the characteristics of hydrogen,oxygen,sulfur,and lead isotopes and those of rare earth elements (REEs) provide insight into the affinity between PSQA and orebodies resulting from juvenile crust or enriched mantle.Combined with previous research on the mineralogenetic epoch (99.32 ± 0.01 Ma),we further confirm that the mineralization of the deposit occurred in the late Early Cretaceous,which coincides with the extension of the continental margin induced by subduction of the Pacific Plate beneath the Eurasian Plate.The formation of the ore deposit was proceeded by a series of magmatic and hydrothermal events,including melting of enriched juvenile crust,upwelling,the eruption and emplacement of the rhyolitic magma,the exsolution and accumulation of magmatic hydrothermal fluid,decompression,the cooling and immiscibility/boiling of the fluid,and mixing of the magmatic fluid with meteoric water,in association with water-rock interaction. 展开更多
关键词 Fluid inclusions H-O-S-Pb isotopes Zircon U-Pb dating Gaosongshan gold deposit Lesser Xing'an RANGE Northeast China
在线阅读 下载PDF
Permian Tectonic Evolution in the Middle Part of Central Asian Orogenic Belt: Evidence from Newly Identified Volcanic Rocks in the Bilutu Area, Inner Mongolia 被引量:3
2
作者 WANG Shijie LIU Yang +5 位作者 DONG Xiaojie XU Zhongyuan WANG Wenlong LI Shichao SHI Qiang CUI Weilong 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2019年第5期1281-1299,共19页
In this study, zircon U-Pb ages, geochemical and Lu-Hf isotopic data are presented for the newly identified volcanic rocks which were considered as Bainaimiao group in Bainaimiao Arc Belt(BAB), Inner Mongolia, which c... In this study, zircon U-Pb ages, geochemical and Lu-Hf isotopic data are presented for the newly identified volcanic rocks which were considered as Bainaimiao group in Bainaimiao Arc Belt(BAB), Inner Mongolia, which could provide important constraints on the evolution of the northern part of North China Block(NCB) and BAB. Basalt to basaltic andesite and andesite to dacite were collected from two sections, which showed eruption ages of 278.2±4.1 Ma and 258.3±3.0 Ma respectively. All samples are characterized by high abundances in Al2O3, LREEs, and LILEs, but depleted in HFSEs. Together with high Mg# ratios and low K/tholeiite to calc-alkaline series, these features indicated that basalt to andesite was likely derived from relatively low degree partial melting of the subduction-fluid related mantle in the spinel phase. And dacite was mainly from the partial melting of crust, then affected by mantle. All samples barely went through fractional crystallization process with the slight Eu anomaly. Compared with the contemporary basalt in NCB, rocks in BAB have a complex composition of zircon and a more positive εHf(t) value(-6.6-6.4), indicating that they had different magma sources of rocks. Though with different basements, NCB and BAB have become an integrated whole before 278 Ma. Therefore, it could be concluded that NCB and BAB belonged to the active continental margin and the PAO had not closed yet until late Permian and then it disappeared gradually and the CAOB developed into a condition of syn-post collision. 展开更多
关键词 PERMIAN volcanic rocks Bilutu Bainaimiao Arc Belt North China Block Central Asian Orogenic Belt
在线阅读 下载PDF
The Late Quaternary Coastal Geo-Environment Evolution and Modern Process of Bohai Bay,China 被引量:2
3
作者 WANG Fu SHANG Zhiwen +2 位作者 LI Jianfen CHEN Yongsheng WANG Hong 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2015年第6期2101-2102,共2页
Paleoenvironmental reconstruction is fundamental to understand the modern environmental changes and to predict future environment, which is especially critical to understand the evolution of land and sea during geolog... Paleoenvironmental reconstruction is fundamental to understand the modern environmental changes and to predict future environment, which is especially critical to understand the evolution of land and sea during geological periods. However, the basic geological research on China's muddy coastal zone is not enough to provide quantitative data to compare with global changes. Therefore, in 2011, China Geological Survey deployed the "Late Quaternary geo-environmental evolution and modern process of China" project, and focused on the muddy coastal zones of the Liaodong Bay, Bohai Bay, the Yellow River Delta, Yangtze River Delta and Pearl River Delta (Fig. 1). Next we will briefly introduce our latest results in the Bohai Bay. 展开更多
关键词 BP area rate The Late Quaternary Coastal Geo-Environment Evolution and Modern Process of Bohai Bay China Bay
在线阅读 下载PDF
Tectonic Evolution of Southeast Central Asian Orogenic Belt: Evidence from Geochronological Data and Paleontology of the Early Paleozoic Deposits in Inner Mongolia 被引量:4
4
作者 Shijie Wang Shichao Li +7 位作者 Wenjie Li Zhongyuan Xu Jinfeng Zhang Changhai Li Qiang Shi Yang Liu Wenlong Wang Qingbin Guan 《Journal of Earth Science》 SCIE CAS CSCD 2020年第4期743-756,共14页
In this study, we present detrital zircon U-Pb dating and paleontological data for the newly identified Ayadeng Formation in the northern margin of the North China Block(NCB) and Xibiehe Formation(molasse) in the Bain... In this study, we present detrital zircon U-Pb dating and paleontological data for the newly identified Ayadeng Formation in the northern margin of the North China Block(NCB) and Xibiehe Formation(molasse) in the Bainaimiao arc belt(BAB), which could provide strong evidence indicating the affinity of the BAB and the evolution of the southeast Central Asian orogenic belt(CAOB). Zircon U-Pb data of siltstone samples and paleontological data indicate the Ayadeng Formation dates back to the Early Ordovician. Although its location is near the NCB, its zircon age spectra and paleontology share a closer affinity with those of Tarim and NE Gondwana, as the U-Pb data suggest an age range of 490–2 192 Ma(peak age=629, 788, 965 and 1 935 Ma), and similar gastropod fossils are found in Tarim and NE Gondwana. The U-Pb ages of meta-sandstone samples in the Xuniwusu Formation indicate a shared inheritance with the Ayadeng Formation(before 440 Ma), and the U-Pb ages of sandstone samples in the Xibiehe Formation are concentrated, with age peaks centered at ca. 420 Ma. Fossil corals occur in these two formations, and their age components also indicate a collisional setting. Therefore, it is speculated that the BAB drifted away from Tarim or NE Gondwana during the Ordovician and became attached to northern NCB between 440–420 Ma as an exotic terrane. During the Early Paleozoic, there may have occurred a collision between an arc and a continental block. 展开更多
关键词 detrital zircon PALEONTOLOGY Bainaimiao arc belt North China Block
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部