Objective. To determine the effect of albumin administration on lung injury in traumatic/hemorrhagic shock (T/HS) rats. Methods: Forty-eight adult Sprague-Dawley rats were divided into three groups randomly ( n =...Objective. To determine the effect of albumin administration on lung injury in traumatic/hemorrhagic shock (T/HS) rats. Methods: Forty-eight adult Sprague-Dawley rats were divided into three groups randomly ( n = 16 in each group) : Group A, Group B, Group C. In Group A, rats underwent laparotomy without shock. In Group B, rats undergoing T/HS were resuscitated with their blood plus lactated Ringer's (twice the volume of shed blood ). In Group C, rats undergoing T/HS were resuscitated with their shed blood plus additional 3 ml of 5% human albumin. The expression of polymorphonuclear neutrophils CD18/CD11b in jugular vein blood was evaluated. The main lung injury indexes (the activity of myeloperoxidase and lung injury score) were measured. Results: Significant differences of the expression of CD18/11b and the severity degree of lung injury were found between the three groups. (P〈0.05). The expression of CD18/CD11b and the main lung injury indexes in Group B and Goup C incresed significantly compared with those in Group A (P 〈0.05). At the same time, the expression of CD18/CD11b and the main lung injury indexes in Group C decreased dramatically, compared with those in Group B ( P 〈0.05 ). Conclusions : The infusion of albumin during resuscitation period can protect lungs from injury and decrease the expression of CD18/CD11b in T/HS rats.展开更多
Given the continuous and growing demand for point of care(POC)diagnostic tests,attention has been shifted toward integration and miniaturization of laboratory protocols into“sample-in-answer-out”devices.Microfluidic...Given the continuous and growing demand for point of care(POC)diagnostic tests,attention has been shifted toward integration and miniaturization of laboratory protocols into“sample-in-answer-out”devices.Microfluidic technologies have been considered an ideal solution to address the requirements of POC diagnostics since many laboratory functions can be miniaturized and incorporated onto a single integrated chip.In this review,we summarize the advances of integrated microfluidic devices for POC diagnostics in the last 3 years.Particularly,we summarize current materials used for microfluidic chip fabrication,discuss the innovation of versatile integrated microfluidic devices,especially the strategies for simplifying sample preparation in manual or self-driven systems,and new detection methods of microfluidic chips.In addition,we describe new integrated microfluidic devices for POC diagnostics of protein-targeted immunodiagnostics,nucleic acid molecular tests,and small molecule metabolites analysis.We also provide future perspectives and current challenges for clinical translation and commercialization of these microfluidic technologies.展开更多
文摘Objective. To determine the effect of albumin administration on lung injury in traumatic/hemorrhagic shock (T/HS) rats. Methods: Forty-eight adult Sprague-Dawley rats were divided into three groups randomly ( n = 16 in each group) : Group A, Group B, Group C. In Group A, rats underwent laparotomy without shock. In Group B, rats undergoing T/HS were resuscitated with their blood plus lactated Ringer's (twice the volume of shed blood ). In Group C, rats undergoing T/HS were resuscitated with their shed blood plus additional 3 ml of 5% human albumin. The expression of polymorphonuclear neutrophils CD18/CD11b in jugular vein blood was evaluated. The main lung injury indexes (the activity of myeloperoxidase and lung injury score) were measured. Results: Significant differences of the expression of CD18/11b and the severity degree of lung injury were found between the three groups. (P〈0.05). The expression of CD18/CD11b and the main lung injury indexes in Group B and Goup C incresed significantly compared with those in Group A (P 〈0.05). At the same time, the expression of CD18/CD11b and the main lung injury indexes in Group C decreased dramatically, compared with those in Group B ( P 〈0.05 ). Conclusions : The infusion of albumin during resuscitation period can protect lungs from injury and decrease the expression of CD18/CD11b in T/HS rats.
基金Fundamental Research Funds for the Central Universities,Grant/Award Number:ZQN-818State Key Laboratory of Chemo/Biosensing and Chemometrics,Grant/Award Number:2019006+1 种基金Natural Science Foundation of Fujian Province,China,Grant/Award Number:2021J01310National Natural Science Foundation of China,Grant/Award Numbers:21775128,21804022。
文摘Given the continuous and growing demand for point of care(POC)diagnostic tests,attention has been shifted toward integration and miniaturization of laboratory protocols into“sample-in-answer-out”devices.Microfluidic technologies have been considered an ideal solution to address the requirements of POC diagnostics since many laboratory functions can be miniaturized and incorporated onto a single integrated chip.In this review,we summarize the advances of integrated microfluidic devices for POC diagnostics in the last 3 years.Particularly,we summarize current materials used for microfluidic chip fabrication,discuss the innovation of versatile integrated microfluidic devices,especially the strategies for simplifying sample preparation in manual or self-driven systems,and new detection methods of microfluidic chips.In addition,we describe new integrated microfluidic devices for POC diagnostics of protein-targeted immunodiagnostics,nucleic acid molecular tests,and small molecule metabolites analysis.We also provide future perspectives and current challenges for clinical translation and commercialization of these microfluidic technologies.