A quantum algorithm provides a new way in solving certain computing problems and usually faster than classical algorithms. Here we report an implementation of a quantum algorithm to determine the parity of permutation...A quantum algorithm provides a new way in solving certain computing problems and usually faster than classical algorithms. Here we report an implementation of a quantum algorithm to determine the parity of permutation in a single three-dimensional(3D) superconducting transmon qutrit system. The experiment shows the capacity to speed up in a qutrit,which can also be extended to a multi-level system for solving high-dimensional permutation parity determination problem.展开更多
Monolayer transition-metal dichalcogenides(TMDs) have attracted a lot of attention for their applications in optics and optoelectronics.Molybdenum disulfide(MoS2),as one of those important materials,has been widel...Monolayer transition-metal dichalcogenides(TMDs) have attracted a lot of attention for their applications in optics and optoelectronics.Molybdenum disulfide(MoS2),as one of those important materials,has been widely investigated due to its direct band gap and photoluminescence(PL) in visible range.Owing to the fact that the monolayer MoS2 suffers low light absorption and emission,surface plasmon polaritons(SPPs) are used to enhance both the excitation and emission efficiencies.Here,we demonstrate that the PL of MoS2 sandwiched between 200-nm-diameter gold nanoparticle(Au NP) and 150-nm-thick gold film is improved by more than 4 times compared with bare MoS2 sample.This study shows that gap plasmons can possess more optical and optoelectronic applications incorporating with many other emerging two-dimensional materials.展开更多
基金supported by the National Key Basic Research and Development Program of China(Grant No.2016YFA0301802)the National Natural Science Foundation of China(Grant Nos.11504165,11474152,and 61521001)
文摘A quantum algorithm provides a new way in solving certain computing problems and usually faster than classical algorithms. Here we report an implementation of a quantum algorithm to determine the parity of permutation in a single three-dimensional(3D) superconducting transmon qutrit system. The experiment shows the capacity to speed up in a qutrit,which can also be extended to a multi-level system for solving high-dimensional permutation parity determination problem.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61590932 and 11774333)the Anhui Initiative Project in Quantum Information Technologies,China(Grant No.AHY130300)+2 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB24030600)the National Key Research and Development Program of China(Grant No.2016YFA0301700)the Fundamental Research Funds for the Central Universities,China
文摘Monolayer transition-metal dichalcogenides(TMDs) have attracted a lot of attention for their applications in optics and optoelectronics.Molybdenum disulfide(MoS2),as one of those important materials,has been widely investigated due to its direct band gap and photoluminescence(PL) in visible range.Owing to the fact that the monolayer MoS2 suffers low light absorption and emission,surface plasmon polaritons(SPPs) are used to enhance both the excitation and emission efficiencies.Here,we demonstrate that the PL of MoS2 sandwiched between 200-nm-diameter gold nanoparticle(Au NP) and 150-nm-thick gold film is improved by more than 4 times compared with bare MoS2 sample.This study shows that gap plasmons can possess more optical and optoelectronic applications incorporating with many other emerging two-dimensional materials.