期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A Communication Scene Recognition Framework Based on Deep Learning with Multi-Sensor Fusion
1
作者 Feng Yufei Zhong Xiaofeng +1 位作者 Chen Xinwei Zhou Shidong 《China Communications》 2025年第4期174-201,共28页
This paper presents a comprehensive framework that enables communication scene recognition through deep learning and multi-sensor fusion.This study aims to address the challenge of current communication scene recognit... This paper presents a comprehensive framework that enables communication scene recognition through deep learning and multi-sensor fusion.This study aims to address the challenge of current communication scene recognition methods that struggle to adapt in dynamic environments,as they typically rely on post-response mechanisms that fail to detect scene changes before users experience latency.The proposed framework leverages data from multiple smartphone sensors,including acceleration sensors,gyroscopes,magnetic field sensors,and orientation sensors,to identify different communication scenes,such as walking,running,cycling,and various modes of transportation.Extensive experimental comparative analysis with existing methods on the open-source SHL-2018 dataset confirmed the superior performance of our approach in terms of F1 score and processing speed.Additionally,tests using a Microsoft Surface Pro tablet and a self-collected Beijing-2023 dataset have validated the framework's efficiency and generalization capability.The results show that our framework achieved an F1 score of 95.15%on SHL-2018and 94.6%on Beijing-2023,highlighting its robustness across different datasets and conditions.Furthermore,the levels of computational complexity and power consumption associated with the algorithm are moderate,making it suitable for deployment on mobile devices. 展开更多
关键词 communication scene recognition deep learning sensor fusion SHL smartphone-based applications
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部