In underground mines, visible light communication(VLC) system is a promising method to realize effective communication,which supports communication and illumination at the same time. Therefore, adequate research of un...In underground mines, visible light communication(VLC) system is a promising method to realize effective communication,which supports communication and illumination at the same time. Therefore, adequate research of underlying physical propagation phenomenon should be carried out to realize VLC system in underground mines. To design VLC system and evaluate its performance, accurate and efficient channel models, including large-scale fading and scattering characteristics, are needed to be established. However,the characteristics of the underlying VLC channels about fading and scattering have not been sufficiently investigated yet. In this paper, a path loss channel model, based on the recursive model, is proposed precisely. Its path loss exponent is determined by three different trajectories, which is studied in the mining roadway and working face environment. Besides, the shadowing effect for VLC has been modelled by a Bimodal Gaussian distribution in underground mines. Considering the number of transmitters in line-of-sight(Lo S) as well as non-line-of-sight(NLo S) scenarios,our simulation illustrates the fact that, as the curve fitting technique is employed, the path loss displays a linear behavior in log-domain.The path loss expression is derived, it is related to the distance. Finally, root mean square(RMS) delay spread and Mie scattering in underground mines are analyzed.展开更多
A new sub-nanosecond pulse generator scheme is proposed in the opinion of frequency field in this paper. The filtering techniques used in the UWB (ultra-wideband) generator make the circuit simple and suitable for int...A new sub-nanosecond pulse generator scheme is proposed in the opinion of frequency field in this paper. The filtering techniques used in the UWB (ultra-wideband) generator make the circuit simple and suitable for integration. The theoretical analysis and simulation results show that monocycle form generated in the scheme have a good balance between positive and negative shape and small traipse by circuit parameter control and has improved the quality of UWB pulse form.展开更多
Many previous studies about teleportation are based on pure state. Study of quantum channel as mixed state is more realistic but complicated as pure states degenerate into mixed states by interaction with environment,...Many previous studies about teleportation are based on pure state. Study of quantum channel as mixed state is more realistic but complicated as pure states degenerate into mixed states by interaction with environment, and the Werner state plays an important role in the study of the mixed state. In this paper, the quantum wireless multihop network is proposed and the information is transmitted hop by hop through teleportation. We deduce a specific expression of the recovered state not only after one-hop teleportation but also across multiple intermediate nodes based on Werner state in a quantum wireless multihop network. We also obtain the fidelity of multihop teleportation.展开更多
The Ultra-WideBand Orthogonal Frequency Division Multiplexing (UWB-OFDM) approach is a promising physical-layer technique for short-range, high data-rate wireless networks. As the occupied band-width increases, howeve...The Ultra-WideBand Orthogonal Frequency Division Multiplexing (UWB-OFDM) approach is a promising physical-layer technique for short-range, high data-rate wireless networks. As the occupied band-width increases, however, its implementation becomes more and more difficult. In order to make it easier to achieve a UWB-OFDM system, a complexity-reduced Frequency diversity (F-diversity) scheme, Fre-quency-Time Block Code (FTBC), is presented in this paper. The FTBC halves the sampling rate required by other F-diversity techniques so as to cut down the cost of UWB-OFDM systems with F-diversity to a certain extent.展开更多
Space time block coding is a modulation scheme recently discovered for the transmit an- tenna diversity to combat the effects of wireless fading channels. Using the equivalent Single-Input Single-Output (SISO) model, ...Space time block coding is a modulation scheme recently discovered for the transmit an- tenna diversity to combat the effects of wireless fading channels. Using the equivalent Single-Input Single-Output (SISO) model, this paper presents closed-form expressions for the exact Symbol Error Rate (SER) and Bit Error Rate (BER) of Orthogonal Space-Time Block Codes (OSTBCs) with M-ary Phase-Shift Keying (MPSK) and M-ary Quadrature Amplitude Modulation (MQAM) over flat un- correlated Nakagami-m and Ricean fading channels.展开更多
The distributed wireless quantum communication network (DWQCN) ha~ a distributed network topology and trans- mits information by quantum states. In this paper, we present the concept of the DWQCN and propose a syste...The distributed wireless quantum communication network (DWQCN) ha~ a distributed network topology and trans- mits information by quantum states. In this paper, we present the concept of the DWQCN and propose a system scheme to transfer quantum states in the DWQCN. The system scheme for transmitting information between any two nodes in the DWQCN includes a routing protocol and a scheme for transferring quantum states. The routing protocol is on-demand and the routing metric is selected based on the number of entangled particle pairs. After setting up a route, quantum tele- portation and entanglement swapping are used for transferring quantum states. Entanglement swapping is achieved along with the process of routing set up and the acknowledgment packet transmission. The measurement results of each entan- glement swapping are piggybacked with route reply packets or acknowledgment packets. After entanglement swapping, a direct quantum link between source and destination is set up and quantum states are transferred by quantum teleportation. Adopting this scheme, the measurement results of entanglement swapping do not need to be transmitted specially, which decreases the wireless transmission cost and transmission delay.展开更多
This paper presents a link allocation and rate assignment algorithm for multi-channel wireless networks. The objective is to reduce network con-flicts and guarantee the fairness among links. We first design a new netw...This paper presents a link allocation and rate assignment algorithm for multi-channel wireless networks. The objective is to reduce network con-flicts and guarantee the fairness among links. We first design a new network model. With this net-work model, the multi-channel wireless network is divided into several subnets according to the num-ber of channels. Based on this, we present a link allocation algorithm with time complexity O(l^2)to al-locate all links to subnets. This link allocation algo-rithm adopts conflict matrix to minimize the network contention factor. After all links are allocated to subnets, the rate assignment algorithm to maximize a fairness utility in each subnet is presented. The rate assignment algorithm adopts a near-optirml al-gorithm based on dual decomposition and realizes in a distributed way. Simulation results demonstrate that, compared with IEEE 802.11b and slotted see-ded channel hopping algorithm, our algorithm de-creases network conflicts and improves the net-work throughput significantly.展开更多
The paper proposes a prediction-mode-based filtering mechanism(PMF) to solve the problems of transmission energy wasting caused by time-redundant data in wireless sensor networks(WSN),according to the characterist...The paper proposes a prediction-mode-based filtering mechanism(PMF) to solve the problems of transmission energy wasting caused by time-redundant data in wireless sensor networks(WSN),according to the characteristic of spatio-temporal correlations on sampling series in data-collection.Prior works have suggested several approaches to decrease energy cost during data transmission process via data aggregation tree structure.Distinguish from those methods in above researches,our proposed scheme mainly focus on reducing the temporal redundant degree in event-source to achieve energy-saving effect via self-adaptive filtering structure.The framework of PMF for energy-efficient collection is composed of prediction module for mining the change law of time domain,self-learning module for updating model,and driving module for controlling data filtering operation.Combined with the design of error driving rule and threshold distributing rule,which is the middleware in the above filtering mechanism,the quantity of transmission load in networks can be greatly inhibited on the premise of quality of service(QoS) assurance and energy consumption can be reduced consequently.Finally,the experimental results show that the performance of PMF can significantly outperform some classical data-collection algorithms on energy-saving effect and self-adaptability.展开更多
This special topic mainly focuses on the progress of physical-layer security(PLS)technologies and their potential applications for the future beyond fifth-generation(B5G)and sixth-generation(6G)networks.The tremendous...This special topic mainly focuses on the progress of physical-layer security(PLS)technologies and their potential applications for the future beyond fifth-generation(B5G)and sixth-generation(6G)networks.The tremendous growth in connectivity and the ubiquity of wireless communications have resulted in an unprecedented awareness of the importance of security and privacy.Achieving secure and trusted communications is vital for future intelligent connected applications,especially life-critical vehicle-toeverything(V2X)applications.However,the heterogeneous,dynamic and decentralized architecture of these networks leads to difficulties for cryptographic key management,and distribution.By exploiting the physical characteristics of devices,wireless channels and noise,PLS offers reliable solutions against eavesdropper attacks as complementary approaches to cryptographic techniques.展开更多
Aiming at the problem of insucient security in the existing wireless data trans-mission,a security transmission technology based on direct modulation with random channel characteristics is proposed.The method rst esti...Aiming at the problem of insucient security in the existing wireless data trans-mission,a security transmission technology based on direct modulation with random channel characteristics is proposed.The method rst estimates channel characteristics using the preamble in the communication frame,and then embeds channel characteristics into the I/Q modulator.After that,the modulated constellation diagram undergoes random hopping of the constellation position compared with the original constellation diagram,thus achieving the e ect of secure transmission.Due to the reciprocity of the uplink and downlink channels,channel characteristics estimated by the downlink receiver are almost the same as those esti-mated by the uplink receiver,and the correct plaintext data can be recovered by performing corresponding demodulation with them.Compared with the existing scheme of quantizing channel characteristics and then encrypting data,the method reduces the performance loss caused by quantization.In addition,its bit error rate is lower than that of the quantization method.In general,it has higher security and convenience.展开更多
Aiming at the problem of insufficient security in the existing wireless data trans-mission,a security transmission technology based on direct modulation with random channel characteristics is proposed.The method first...Aiming at the problem of insufficient security in the existing wireless data trans-mission,a security transmission technology based on direct modulation with random channel characteristics is proposed.The method first estimates channel characteristics using the preamble in the communication frame,and then embeds channel characteristics into the I/Q modulator.After that,the modulated constellation diagram undergoes random hopping of the constellation position compared with the original constellation diagram,thus achieving the effect of secure transmission.Due to the reciprocity of the uplink and downlink channels,channel characteristics estimated by the downlink receiver are almost the same as those esti-mated by the uplink receiver,and the correct plaintext data can be recovered by performing corresponding demodulation with them.Compared with the existing scheme of quantizing channel characteristics and then encrypting data,the method reduces the performance loss caused by quantization.In addition,its bit error rate is lower than that of the quantization method.In general,it has higher security and convenience.展开更多
基金support from the National Natural Science Foundation of China (Grant No. 61371110)Key R&D Program of Shandong Province (Grant No. 2016GGX101014)+1 种基金EU H2020 RISE TESTBED project (Grant No. 734325)the Fundamental Research Funds of Shandong University (No. 2017JC029)
文摘In underground mines, visible light communication(VLC) system is a promising method to realize effective communication,which supports communication and illumination at the same time. Therefore, adequate research of underlying physical propagation phenomenon should be carried out to realize VLC system in underground mines. To design VLC system and evaluate its performance, accurate and efficient channel models, including large-scale fading and scattering characteristics, are needed to be established. However,the characteristics of the underlying VLC channels about fading and scattering have not been sufficiently investigated yet. In this paper, a path loss channel model, based on the recursive model, is proposed precisely. Its path loss exponent is determined by three different trajectories, which is studied in the mining roadway and working face environment. Besides, the shadowing effect for VLC has been modelled by a Bimodal Gaussian distribution in underground mines. Considering the number of transmitters in line-of-sight(Lo S) as well as non-line-of-sight(NLo S) scenarios,our simulation illustrates the fact that, as the curve fitting technique is employed, the path loss displays a linear behavior in log-domain.The path loss expression is derived, it is related to the distance. Finally, root mean square(RMS) delay spread and Mie scattering in underground mines are analyzed.
文摘A new sub-nanosecond pulse generator scheme is proposed in the opinion of frequency field in this paper. The filtering techniques used in the UWB (ultra-wideband) generator make the circuit simple and suitable for integration. The theoretical analysis and simulation results show that monocycle form generated in the scheme have a good balance between positive and negative shape and small traipse by circuit parameter control and has improved the quality of UWB pulse form.
基金supported by the Prospective Future Network Project of Jiangsu Province,China(Grant No.BY2013095-1-18)the Independent Project of State Key Laboratory of Millimeter Waves(Grant No.Z201504)
文摘Many previous studies about teleportation are based on pure state. Study of quantum channel as mixed state is more realistic but complicated as pure states degenerate into mixed states by interaction with environment, and the Werner state plays an important role in the study of the mixed state. In this paper, the quantum wireless multihop network is proposed and the information is transmitted hop by hop through teleportation. We deduce a specific expression of the recovered state not only after one-hop teleportation but also across multiple intermediate nodes based on Werner state in a quantum wireless multihop network. We also obtain the fidelity of multihop teleportation.
文摘The Ultra-WideBand Orthogonal Frequency Division Multiplexing (UWB-OFDM) approach is a promising physical-layer technique for short-range, high data-rate wireless networks. As the occupied band-width increases, however, its implementation becomes more and more difficult. In order to make it easier to achieve a UWB-OFDM system, a complexity-reduced Frequency diversity (F-diversity) scheme, Fre-quency-Time Block Code (FTBC), is presented in this paper. The FTBC halves the sampling rate required by other F-diversity techniques so as to cut down the cost of UWB-OFDM systems with F-diversity to a certain extent.
基金the Natural Science Foundation of Liaoning Province (No.20042121) in part by the Open Topic Foundation of National Mobile Communications Research Laboratory of Southeast University (No.A2005011).
文摘Space time block coding is a modulation scheme recently discovered for the transmit an- tenna diversity to combat the effects of wireless fading channels. Using the equivalent Single-Input Single-Output (SISO) model, this paper presents closed-form expressions for the exact Symbol Error Rate (SER) and Bit Error Rate (BER) of Orthogonal Space-Time Block Codes (OSTBCs) with M-ary Phase-Shift Keying (MPSK) and M-ary Quadrature Amplitude Modulation (MQAM) over flat un- correlated Nakagami-m and Ricean fading channels.
基金supported by the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (Grant No. 60921063)the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 60902010)
文摘The distributed wireless quantum communication network (DWQCN) ha~ a distributed network topology and trans- mits information by quantum states. In this paper, we present the concept of the DWQCN and propose a system scheme to transfer quantum states in the DWQCN. The system scheme for transmitting information between any two nodes in the DWQCN includes a routing protocol and a scheme for transferring quantum states. The routing protocol is on-demand and the routing metric is selected based on the number of entangled particle pairs. After setting up a route, quantum tele- portation and entanglement swapping are used for transferring quantum states. Entanglement swapping is achieved along with the process of routing set up and the acknowledgment packet transmission. The measurement results of each entan- glement swapping are piggybacked with route reply packets or acknowledgment packets. After entanglement swapping, a direct quantum link between source and destination is set up and quantum states are transferred by quantum teleportation. Adopting this scheme, the measurement results of entanglement swapping do not need to be transmitted specially, which decreases the wireless transmission cost and transmission delay.
基金This work was supported by the National Natural Science Foundation of China under Cxant No. 60902010 the Research Fund of State Key Laboratory of Mobile Communications un-der Crant No. 2012A03.
文摘This paper presents a link allocation and rate assignment algorithm for multi-channel wireless networks. The objective is to reduce network con-flicts and guarantee the fairness among links. We first design a new network model. With this net-work model, the multi-channel wireless network is divided into several subnets according to the num-ber of channels. Based on this, we present a link allocation algorithm with time complexity O(l^2)to al-locate all links to subnets. This link allocation algo-rithm adopts conflict matrix to minimize the network contention factor. After all links are allocated to subnets, the rate assignment algorithm to maximize a fairness utility in each subnet is presented. The rate assignment algorithm adopts a near-optirml al-gorithm based on dual decomposition and realizes in a distributed way. Simulation results demonstrate that, compared with IEEE 802.11b and slotted see-ded channel hopping algorithm, our algorithm de-creases network conflicts and improves the net-work throughput significantly.
基金supported by the National Natural Science Foundation of China (60802005)the Science Foundation for the Excellent Youth Scholars at East China University of Science and Technology (YH0157127)the Undergraduate Innovational Experimentation Program in ECUST (X1033)
文摘The paper proposes a prediction-mode-based filtering mechanism(PMF) to solve the problems of transmission energy wasting caused by time-redundant data in wireless sensor networks(WSN),according to the characteristic of spatio-temporal correlations on sampling series in data-collection.Prior works have suggested several approaches to decrease energy cost during data transmission process via data aggregation tree structure.Distinguish from those methods in above researches,our proposed scheme mainly focus on reducing the temporal redundant degree in event-source to achieve energy-saving effect via self-adaptive filtering structure.The framework of PMF for energy-efficient collection is composed of prediction module for mining the change law of time domain,self-learning module for updating model,and driving module for controlling data filtering operation.Combined with the design of error driving rule and threshold distributing rule,which is the middleware in the above filtering mechanism,the quantity of transmission load in networks can be greatly inhibited on the premise of quality of service(QoS) assurance and energy consumption can be reduced consequently.Finally,the experimental results show that the performance of PMF can significantly outperform some classical data-collection algorithms on energy-saving effect and self-adaptability.
文摘This special topic mainly focuses on the progress of physical-layer security(PLS)technologies and their potential applications for the future beyond fifth-generation(B5G)and sixth-generation(6G)networks.The tremendous growth in connectivity and the ubiquity of wireless communications have resulted in an unprecedented awareness of the importance of security and privacy.Achieving secure and trusted communications is vital for future intelligent connected applications,especially life-critical vehicle-toeverything(V2X)applications.However,the heterogeneous,dynamic and decentralized architecture of these networks leads to difficulties for cryptographic key management,and distribution.By exploiting the physical characteristics of devices,wireless channels and noise,PLS offers reliable solutions against eavesdropper attacks as complementary approaches to cryptographic techniques.
基金Jiangsu Province Key R&D Program(Grant No.BE2019109).
文摘Aiming at the problem of insucient security in the existing wireless data trans-mission,a security transmission technology based on direct modulation with random channel characteristics is proposed.The method rst estimates channel characteristics using the preamble in the communication frame,and then embeds channel characteristics into the I/Q modulator.After that,the modulated constellation diagram undergoes random hopping of the constellation position compared with the original constellation diagram,thus achieving the e ect of secure transmission.Due to the reciprocity of the uplink and downlink channels,channel characteristics estimated by the downlink receiver are almost the same as those esti-mated by the uplink receiver,and the correct plaintext data can be recovered by performing corresponding demodulation with them.Compared with the existing scheme of quantizing channel characteristics and then encrypting data,the method reduces the performance loss caused by quantization.In addition,its bit error rate is lower than that of the quantization method.In general,it has higher security and convenience.
基金supported by Jiangsu Province Key R&D Program(Grant No.BE2019109).
文摘Aiming at the problem of insufficient security in the existing wireless data trans-mission,a security transmission technology based on direct modulation with random channel characteristics is proposed.The method first estimates channel characteristics using the preamble in the communication frame,and then embeds channel characteristics into the I/Q modulator.After that,the modulated constellation diagram undergoes random hopping of the constellation position compared with the original constellation diagram,thus achieving the effect of secure transmission.Due to the reciprocity of the uplink and downlink channels,channel characteristics estimated by the downlink receiver are almost the same as those esti-mated by the uplink receiver,and the correct plaintext data can be recovered by performing corresponding demodulation with them.Compared with the existing scheme of quantizing channel characteristics and then encrypting data,the method reduces the performance loss caused by quantization.In addition,its bit error rate is lower than that of the quantization method.In general,it has higher security and convenience.