For the practical application of sweat glucose biosensors,it is crucial to develop a method for modifying the working electrode with noble metals that ensures strong adhesion.In this study,we synthesized porous Pt-Pd ...For the practical application of sweat glucose biosensors,it is crucial to develop a method for modifying the working electrode with noble metals that ensures strong adhesion.In this study,we synthesized porous Pt-Pd bimetallic structures using the dynamic hydrogen bubble template (DHBT) method.展开更多
The rapid development of two-dimensional(2D)transition-metal dichalcogenides has been possible owing to their special structures and remarkable properties.In particular,palladium diselenide(PdSe_(2))with a novel penta...The rapid development of two-dimensional(2D)transition-metal dichalcogenides has been possible owing to their special structures and remarkable properties.In particular,palladium diselenide(PdSe_(2))with a novel pentagonal structure and unique physical characteristics have recently attracted extensive research inter-est.Consequently,tremendous research progress has been achieved regarding the physics,chemistry,and electronics of PdSe_(2).Accordingly,in this review,we recapitulate and summarize the most recent research on PdSe_(2),including its structure,properties,synthesis,and appli-cations.First,a mechanical exfoliation method to obtain PdSe_(2) nanosheets is introduced,and large-area synthesis strate-gies are explained with respect to chemical vapor deposition and metal selenization.Next,the electronic and optoelectronic properties of PdSe_(2) and related hetero-structures,such as field-effect transistors,photodetectors,sensors,and thermoelec-tric devices,are discussed.Subsequently,the integration of systems into infrared image sensors on the basis of PdSe_(2) van der Waals heterostructures is explored.Finally,future opportunities are highlighted to serve as a general guide for physicists,chemists,materials scientists,and engineers.Therefore,this com-prehensive review may shed light on the research conducted by the 2D material community.展开更多
Flexible electronics has emerged as a continuously growing field of study.Two-dimensional(2D)materials often act as conductors and electrodes in elec-tronic devices,holding significant promise in the design of high-pe...Flexible electronics has emerged as a continuously growing field of study.Two-dimensional(2D)materials often act as conductors and electrodes in elec-tronic devices,holding significant promise in the design of high-performance,flexible electronics.Numerous studies have focused on harnessing the potential of these materials for the development of such devices.However,to date,the incorporation of 2D materials in flexible electronics has rarely been summa-rized or reviewed.Consequently,there is an urgent need to develop compre-hensive reviews for rapid updates on this evolving landscape.This review covers progress in complex material architectures based on 2D materials,including interfaces,heterostructures,and 2D/polymer composites.Addition-ally,it explores flexible and wearable energy storage and conversion,display and touch technologies,and biomedical applications,together with integrated design solutions.Although the pursuit of high-performance and high-sensitivity instruments remains a primary objective,the integrated design of flexible electronics with 2D materials also warrants consideration.By combin-ing multiple functionalities into a singular device,augmented by machine learning and algorithms,we can potentially surpass the performance of existing wearable technologies.Finally,we briefly discuss the future trajectory of this burgeoning field.This review discusses the recent advancements in flex-ible sensors made from 2D materials and their applications in integrated archi-tecture and device design.展开更多
A recent progress in new emerging two-dimensional(2 D)materials has provided promising opportunity for gas sensing in ultra-low detectable concentration.In this work,we have demonstrated a flexible NO2 gas sensor with...A recent progress in new emerging two-dimensional(2 D)materials has provided promising opportunity for gas sensing in ultra-low detectable concentration.In this work,we have demonstrated a flexible NO2 gas sensor with porous structure graphene on polyethylene terephthalate substrates operating at room temperature.The gas sensor exhibited good performance with response of 1.2%and a fast response time within 30 s after exposure to50×10^-9 NO2 gas.As porous structure of graphene increased the surface area,the sensor showed high sensitivity of ppb level for NO2 detection.Au nanoparticles were decorated on the surface of the porous structure graphene skeleton,resulting in an incensement of response compared with pristine graphene.Au nanoparticles-decorated graphene exhibits not only better sensitivity(1.5-1.6 times larger than pristine graphene)for NO2 gas detection,but also fast response.The sensor was found to be robust and sensitive under the cycling bending test,which could also be ascribed to the merits of graphene.This porous structure graphene-based gas sensor is expected to enable a simple and inexpensive flexible gas sensing platform.展开更多
Biomedical materials have received increasing attention in recent decades and have been used in medical applications to advance patient care,such as prosthetic implants,tissue repair and regeneration,drug delivery sys...Biomedical materials have received increasing attention in recent decades and have been used in medical applications to advance patient care,such as prosthetic implants,tissue repair and regeneration,drug delivery systems,pharmaceutical or biological therapy products,and sensitive diagnostic technologies.Among different types of biomedical materials,nonferrous metals and related materials(NMRMs)are important and attractive candidates.The updating of biomedical NMRMs and devices heavily relies on original research and applicationoriented innovation.Here,we provide recent research findings and succinct insights into the developments in NMRMs for biomedical applications in China,including the use of titanium,magnesium,copper,zinc,cobalt,zirconium,hafnium,niobium,rhenium,tantalum,tungsten,silver,gold,platinum,palladium,their alloys and compounds,rare earths,high-entropy alloys,and liquid metals.Finally,the literature review concludes with several possible directions of NMRMs for new and future developments in biomedical engineering.展开更多
The dry sliding wear behavior of Ti_2AlC reinforced AZ91 magnesium composites was investigated at sliding velocity of 0.5 m/s under loads of 10, 20, 40 and 80 N using pin-on-disk configuration against a Cr15 steel dis...The dry sliding wear behavior of Ti_2AlC reinforced AZ91 magnesium composites was investigated at sliding velocity of 0.5 m/s under loads of 10, 20, 40 and 80 N using pin-on-disk configuration against a Cr15 steel disc. Wear rates and friction coefficients were registered during wear tests. Worn tracks and wear debris were examined by scanning electron microscopy, energy dispersive X-ray spectrometry and transmission electron microscopy in order to obtain the wear mechanisms of the studied materials. The main mechanisms were characterized as the magnesium matrix oxidation and self-lubrication of Ti_2AlC MAX phase. In all conditions, the composites exhibit superior wear resistance and self-lubricated ability than the AZ91 Mg alloy. In addition, the anisotropic mechanisms in tribological properties of textured Ti_2AlC-Mg composites were confirmed and discussed.展开更多
In the field of glucose sensors,the development of inexpensive and high-efficiency electrochemical glucose sensors is the current research hotspot.In this paper,CuO-Co_(3)O_(4)composite with a prickly-sphere-like morp...In the field of glucose sensors,the development of inexpensive and high-efficiency electrochemical glucose sensors is the current research hotspot.In this paper,CuO-Co_(3)O_(4)composite with a prickly-sphere-like morphology is prepared by the facile hydrothermal method for the non-enzymatic electrochemical glucose detection.X-ray diffraction,scanning electron microscopy,transmission electron microscopy,energy-dispersive X-ray spec-troscopy,and X-ray photoelectron spectroscopy are used to analyze the structure,composition,and morphology of the material.In addition,the electrochemical catalytic perfor-mance of CuO-Co_(3)O_(4)to glucose is obtained by cyclic voltammetry and chronoamperometry.The excellent elec-trochemical sensing performance may be attributed to the large number of catalytic sites in the prickly-sphere-like composite and the synergistic effect of Cu and Co.Under an applied voltage of 0.55 V,CuO-Co_(3)O_(4)composite shows sensitivity to glucose(1503.45μA·(mmol·L^(-1))^(-1)-cm^(-2)),a low detection limit(21.95μmol·L^(-1)),excellent selectivity,a high level of reproducibility,and good sta-bility.This indicates that the CuO-Co_(3)O_(4)composite has a broad prospect of non-enzymatic glucose sensing application.展开更多
MXene-based hydrogels have drawn considerable attention as flexible and wearable sensors.However,the application of MXene-based hydrogels after sensing failure has rarely been investigated,which is of great significan...MXene-based hydrogels have drawn considerable attention as flexible and wearable sensors.However,the application of MXene-based hydrogels after sensing failure has rarely been investigated,which is of great significance for expanding their engineering application.In this work,multifunctional mineral MXene hydrogels(MMHs)were synthesized via a simple method inspired by biomineralization.The prepared MMHs were stretchable,self-healable and conductive,and can be used to fabricate wearable tensile strain sensors showing a super-wide sensing range with excellent sensitivity.MMHs-based strain sensors were designed to be directly attached to the skin surface to detect tiny and large human motions.In addition,with the advantages of a large specific area,excellent hydrophilicity and abundant active adsorption sites for MXene nanosheets and hydrogels,dehydrated MMHs were used as highly efficient adsorbents for the removal of strontium ions from aqueous solutions.This work shows the great potential of MXene in promoting the development of nextgeneration functional materials.展开更多
Impurities and their distributions in osmium targets for M-type cathodes affect the coating quality on porous tungsten and cathode emission performance.Glow discharge mass spectrometry(GDMS)and X-ray photoelectron spe...Impurities and their distributions in osmium targets for M-type cathodes affect the coating quality on porous tungsten and cathode emission performance.Glow discharge mass spectrometry(GDMS)and X-ray photoelectron spectroscopy(XPS)were used to analyze the impurity contents and distributions in the osmium target.The chemical states of impurity elements were analyzed and characterized.The total amount of metallic impurity in the target was lower than 0.01 wt%.展开更多
To improve the nitriding resistance of Zr_(2)Fe alloy,the Ce-added Zr_(2)(Fe_(1-x)Ni_(x))(x=0,0.15,0.3,0.5)alloys were prepared by magnetic levitation melting method.The effects of Ni substitution for Fe on the phase ...To improve the nitriding resistance of Zr_(2)Fe alloy,the Ce-added Zr_(2)(Fe_(1-x)Ni_(x))(x=0,0.15,0.3,0.5)alloys were prepared by magnetic levitation melting method.The effects of Ni substitution for Fe on the phase structure,hydrogen and nitrogen absorption properties of the alloys were investigated by X-ray diffraction,scanning electron microscopy and p-c isotherm measurements.The experimental results show that Ni substitution can effectively inhibit the formation of both α-Zr and ZrFe_(2) phases and promote the formation of C16 structure Zr_(2)(Fe,Ni)phase,causing Ni-substituted alloys to exhibit low nitrogen absorption rate and capacity.At 623 K under 0.5 MPa nitrogen pressure,the nitrogen absorption capacity of Ce-added Zr_(2)(Fe_(0.5)Ni_(0.5))alloy reaches to 0.8 mL/g,much lower than that of Zr_(2)Fe alloy(1.5 mL/g).Ni substitution decreases the crystal cell volume of the C_(16)Zr_(2)(Fe,Ni)phase,resulting in an increase in the hydrogen absorption equilibrium pressure.At 623 K under 0.05 MPa hydrogen pressure,the hydrogen absorption capacity decreases from 1.46 wt%of Zr_(2)Fe alloy to 1.41 wt%of Ce-added Zr_(2)(Fe_(0.5)Ni_(0.5))alloy.展开更多
In this work,a conventional HfO_(2) gate dielectric layer is replaced with a 3-nm ferroelectric(Fe) HZO layer in the gate stacks of advanced fin field-effect transistors(FinFETs).Fe-induced characteristics,e.g.,negati...In this work,a conventional HfO_(2) gate dielectric layer is replaced with a 3-nm ferroelectric(Fe) HZO layer in the gate stacks of advanced fin field-effect transistors(FinFETs).Fe-induced characteristics,e.g.,negative drain induced barrier lowering(N-DIBL) and negative differential resistance(NDR),are clearly observed for both p-and n-type HZO-based FinFETs.These characteristics are attributed to the enhanced ferroelectricity of the 3-nm hafnium zirconium oxide(HZO) film,caused by Al doping from the TiAlC capping layer.This mechanism is verified for capacitors with structures similar to the FinFETs.Owing to the enhanced ferroelectricity and N-DIBL phenomenon,the drain current(I_(DS))of the HZO-FinFETs is greater than that of HfO_(2)-FinFETs and obtained at a lower operating voltage.Accordingly,circuits based on HZO-FinFET achieve higher performance than those based on HfO_(2)-FinFET at a low voltage drain(V_(DD)),which indicates the application feasibility of the HZO-FinFETs in the ultralow power integrated circuits.展开更多
High-performance type-Ⅱsuperlattices ofⅢ-Ⅴsemiconductor materials play an important role in the development and application of infrared optoelectronic devices.Improving the quality of epitaxial materials and clarif...High-performance type-Ⅱsuperlattices ofⅢ-Ⅴsemiconductor materials play an important role in the development and application of infrared optoelectronic devices.Improving the quality of epitaxial materials and clarifying the luminescent mechanism are of great significance for practic al applic ations.In this work,strain-balanced and high-quality In As/In_(x)Ga_(1-x)As_(y)Sb_(1-y)superlattices without lattice mismatch were achieved on InAs and GaSb substrates successfully.Superlattices grown on In As substrate could exhibit higher crystal quality and surface flatness based on high-resolution X-ray diffraction(HRXRD)and atomic force microscopy(AFM)measurements'results.Moreover,the strain distribution phenomenon from geometric phase analysis indicates that fluctuations of alloy compositions in superlattices on GaSb substrate are more obvious.In addition,the optical properties of superlattices grown on different substrates are discussed systematically.Because of the difference in fluctuations of element composition and interface roughness of superlattices on different substrates,the superlattices grown on In As substrate would have higher integral intensity and narrower full-width at half maximum of long-wave infrared emission.Finally,the thermal quenching of emission intensity indicates that the superlattices grown on the In As substrate have better recombination ability,which is beneficial for increasing the operating temperature of infrared optoelectronic devices based on this type of superlattices.展开更多
Dielectric and energy storage properties of PbOSrO-Na_(2)O-Nb_(2)O_(5)-SiO_(2)(PSNNS) thin films with annealing temperature from 700 to 850 ℃ were investigated by measuring their capacitance-electric filed curve and ...Dielectric and energy storage properties of PbOSrO-Na_(2)O-Nb_(2)O_(5)-SiO_(2)(PSNNS) thin films with annealing temperature from 700 to 850 ℃ were investigated by measuring their capacitance-electric filed curve and hysteresis loops.The results show that the highest dielectric constant and energy density are 81.2 and 17.0 J·cm^(-3),respectively,which is obtained in the sample with annealing temperature of 800 ℃.Annealed from 700 to800 ℃,the dielectric constant and energy storage performance of PSNNS films are continuously improved.However,with annealing temperature up to 850 ℃,their dielectric constant decreases,which might be related with the removal of interfacial defects as a function of annealing temperature.Defect is one of the causes of space charge phenomenon,resulting in the increase in dielectric constant.Moreover,the micro structure analysis by X-ray diffraction(XRD) and transmission electron microscope(TEM) indicates that the change of crystallization phase and interfacial polarization takes responsibility to the results.展开更多
Zinc and its alloys provide a scalable alternative to the list of biodegradable metals due to its moderate degradation rates and biocompatible degradation products.However,one of the challenges impeding their clinical...Zinc and its alloys provide a scalable alternative to the list of biodegradable metals due to its moderate degradation rates and biocompatible degradation products.However,one of the challenges impeding their clinical applications is the uncontrollable and unstable interfacial reactions between zinc implants and the corrosive media.In this study,we report a facile synthesis of metal-organic framework(MOF)nanocrystal coating with tunable thickness on the high-strength Zn-0.8Li alloy matrix for controlled corrosion.The as-obtained dense and uniform MOF nanocrystals form a strong connection with the zinc matrix via coordination bond so as to maintain the mechanical properties,and meantime provide highly rough surfaces exhibiting tunable wettability.The varied MOF coating thus regulate the interface structure between the zinc matrix and corrosive media to control the degradation behavior.Excellent antibacterial activity and biocompatibility are also achieved because of the unique topology morphologies,surface superhydrophilicity,as well as the dynamic Zn^(2+)release.This study sheds valuable lights on the design of MOF-functionalized metal implants for practical use and also triggers extensive applications of MOF in biomaterials.展开更多
It is of vital importance to construct highly interconnected,macroporous photocatalyst to improve its efficiency and applicability in solar energy conversion and environment remediation.Graphitic-like C_3N_4(g-C_3N_4)...It is of vital importance to construct highly interconnected,macroporous photocatalyst to improve its efficiency and applicability in solar energy conversion and environment remediation.Graphitic-like C_3N_4(g-C_3N_4),as an analogy to two-dimensional(2D)graphene,is highly identified as a visible-lightresponsive polymeric semiconductor.Moreover,the feasibility of g-C_3N_4 in making porous structures has been well established.However,the preparation of macroporous g-C_3N_4 with abundant porous networks and exposure surface,still constitutes a difficulty.To solve it,we report a first facile preparation of bimodal macroporous g-C_3N_4 hybrids with abundant in-plane holes,which is simply enabled by in-situ modification through thermally treating the mixture of thiourea and SnCl_4(pore modifier)after rotary evaporation.For one hand,the formed in-plane macropores endow the g-C_3N_4 system with plentiful active sites and short,cross-plane diffusion channels that can greatly speed up mass transport and transfer.For another,the heterojunctions founded between g-C_3N_4 and SnO_2 consolidate the electron transfer reaction to greatly reduce the recombination probability.As a consequence,the resulted macroporous gC_3N_4/SnO_2 nanohybrid had a high specific surface area(SSA)of 44.3 m^2/g that was quite comparable to most nano/mesoporous g-C_3N_4 reported.The interconnected porous network also rendered a highly intensified light absorption by strengthening the light penetration.Together with the improved mass transport and electron transfer,the macroporous g-C_3N_4/SnO_2 hybrid exhibited about 2.4-fold increment in the photoactivity compared with pure g-C_3N_4.Additionally,the recyclability of such hybrid could be guaranteed after eight successive uses.展开更多
Because of the excellent light-trapping ability of black silicon,it has emerged as a versatile substrate for photothermic applications.In this paper,multi-nanostructured black silicon with wide-band mid-infrared absor...Because of the excellent light-trapping ability of black silicon,it has emerged as a versatile substrate for photothermic applications.In this paper,multi-nanostructured black silicon with wide-band mid-infrared absorption properties for application in pyroelectric detectors is reported.Black silicon is fabricated on a substrate surface masked by Ag nanoparticle arrays using single-step etching of C_(4)F_(8)and SF_(6)plasma.The low absorption of black silicon in the mid-infrared region is improved when a secondary nanostructure with Pt nanoparticles and SiO_(2)thin films is deposited on the surface of the prepared black silicon by microelectromechanical system(MEMS)processes.Electrons are scattered at particle boundary,resulting in dielectric loss to incident infrared(IR)region.Compared to single black silicon,the structure decorated with the multi-nanostructure can achieve higher infrared absorption,which is contributed to the high-dielectric loss properties of the Pt nanoparticles.Simulations and experiments show that the thickness of black silicon and number of layers of platinum particles contribute to mid-infrared absorption,with wavelength ranging from 2.5 to 20.0μm,and the absorption reaches~90%.The proposed absorber provides a promising solution for thermal detectors.展开更多
The effect of N_(2)-plasma-treated SiO_(2) interfacial layer on the interfacial and electrical characteristics of HfO_(2)/SiO_(2)/p-Si stacks grown by atomic layer deposition(ALD) was investigated.The microstructure a...The effect of N_(2)-plasma-treated SiO_(2) interfacial layer on the interfacial and electrical characteristics of HfO_(2)/SiO_(2)/p-Si stacks grown by atomic layer deposition(ALD) was investigated.The microstructure and interfacial chemical bonding configuration of the HfO_(2)/SiO_(2)/Si stacks were also examined by high-resolution transmission electron microscopy(HRTEM) and X-ray photoelectron spectroscopy(XPS).Compared with the samples without N2-plasma treatment,it is found that the samples with N2-plasma treatment have less oxygen vacancy density for SiO_(2) interfacial layer and better HfO_(2)/SiO_(2) interface.In agreement with XPS analyses,electrical measurements of the samples with N2-plasma treatment show better interfacial quality,including lower interface-state density(Dit,9.3 × 1011 cm^(-2)·eV^(-1) near midgap) and lower oxidecharge density(Q_(ox),2.5 × 1012 cm^(-2)),than those of the samples without N_(2)-plasma treatment.Additionally,the samples with N_(2)-plasma treatment have better electrical performances,including higher saturation capacitance density(1.49 μF·cm^(-2)) and lower leakage current density(3.2 × 10^(-6) A·cm^(-2) at V_(g)=V_(fb)-1 V).Furthermore,constant voltage stress was applied on the gate electrode to investigate the reliability of these samples.It shows that the samples with N_(2)-plasma treatment have better electrical stability than the samples without N_(2)-plasma treatment.展开更多
A homogeneous porous Co3 O4-ZnO nanomaterial(Zn-CoOx)was successfully fabricated by precipitationannealing route.The as-prepared Zn-CoOx exhibited good response,reliable reversibility and good selectivity towards alco...A homogeneous porous Co3 O4-ZnO nanomaterial(Zn-CoOx)was successfully fabricated by precipitationannealing route.The as-prepared Zn-CoOx exhibited good response,reliable reversibility and good selectivity towards alcohols,which attributed to the porous structure and p-n heterojunction formed between Co3 O4 and ZnO.In particular,the different Fermi levels of Co3 O4 and ZnO leaded to a further increase the depth of the space charge layer,which improved the gas sensitivity of the material from 10%to 480%.Besides,the continuous CO3 O4 leaded to a relatively lower operating temperature and resista nce.This material preparation method and bimetallic oxides could be widely used in the research and development of metal oxide gas sensitive materials and sensors.展开更多
Lightweight nanocomposites consisting of magnetic and dielectric units aroused intensive interest as potential high performance electromagnetic wave absorbing materials.In this work,we report a facile and efficient me...Lightweight nanocomposites consisting of magnetic and dielectric units aroused intensive interest as potential high performance electromagnetic wave absorbing materials.In this work,we report a facile and efficient method to fabricate(Co,SiO_(2))/PPy composites with tunable electromagnetic properties.The absorbing properties and effective absorbing bandwidth can be regulated by controlling the content of SiO_(2) in composites.The composite shows a maximum reflection loss(RL)of-65.31 d B at 11.12 GHz with a thickness of 3.002 mm when SiO_(2) being 22 wt.%.The effective absorbing bandwidth reaches up to 5.1 GHz(8.91-14.01 GHz),which covers the entire X band(8-12 GHz).The improved impedance matching,high interfacial polarization and complex electromagnetic synergy in the composites are the key factors giving rise to the higher efficient absorption.The PPy aerogel-based nanocomposites with controllable absorption performance,lower density and strong environmental adaptability will become attractive candidates as advanced microwave absorbing materials.展开更多
Ga-free InAs/InAsSb type-Ⅱ superlattices(T2SL) have extensive application prospective in infrared photodetectors. Achieving higher operation temperature is critical to its commercial applications. Here, a fractional ...Ga-free InAs/InAsSb type-Ⅱ superlattices(T2SL) have extensive application prospective in infrared photodetectors. Achieving higher operation temperature is critical to its commercial applications. Here, a fractional monolayer alloy method was used to grow InAsSb alloy with better controlled alloy composition. The as-grown T2SL gave eleven satellite peaks and a first satellite peak with a narrow full-width-half-maximum (FWHM) of 20.5arcsec (1 arcsec=0.01592°). Strain mapping results indicated limited Sb diffusion through the As-Sb exchange process at the interface. Moreover, unlike interface states caused by the As-Sb exchange effect, this relatively clear interface was distinctive with localized states with higher activation energies of the non-radiative recombination process ((18±1) meV and (84±12) meV at different temperature ranges), which means that this interface state introduced by fractional monolayer alloy growth method can effectively suppress Auger recombination process in T2SL. Through this interface engineering of InAs/InAsSb Type-Ⅱ superlattice, it achieved detective photoluminescence (PL) signal with the center wavelength of 9μm at 250K.展开更多
基金financially supported by the National Natural Science Foundation of China (No.52172158)the Key-Area Research and Development Program of Guangdong Province (No.2021B0909060001)。
文摘For the practical application of sweat glucose biosensors,it is crucial to develop a method for modifying the working electrode with noble metals that ensures strong adhesion.In this study,we synthesized porous Pt-Pd bimetallic structures using the dynamic hydrogen bubble template (DHBT) method.
基金H.L.acknowledges the National Key Research and Development Program of China(2017YFB0405400)from the Ministry of Science and Technology(MOST)of Chinathe Natural Science Foundation for Distinguished Young Scientist of Shandong Province(Grant No.JQ201814)+6 种基金We thank the Project of“20 items of University”of Jinan(2018GXRC031)W.Z thanks Taishan Scholars Project Special Funds(tsqn201812083)and NSFC(No.52022037)The authors show their gratitude to the National Natural Science Foundation of China(NSFC grant No.51802113,51802116)the Natural Science Foundation of Shandong Province,China(grant No.ZR2019BEM040,ZR2018BEM015)M.H.R.thanks the National Science Foundation China(NSFC,Project 52071225)the National Science Center and the Czech Republic under the ERDF program“Institute of Environmental Technology-Excellent Research”(No.CZ.02.1.01/0.0/0.0/16_019/0000853)the Sino-German Research Institute for support(Project No.GZ 1400).
文摘The rapid development of two-dimensional(2D)transition-metal dichalcogenides has been possible owing to their special structures and remarkable properties.In particular,palladium diselenide(PdSe_(2))with a novel pentagonal structure and unique physical characteristics have recently attracted extensive research inter-est.Consequently,tremendous research progress has been achieved regarding the physics,chemistry,and electronics of PdSe_(2).Accordingly,in this review,we recapitulate and summarize the most recent research on PdSe_(2),including its structure,properties,synthesis,and appli-cations.First,a mechanical exfoliation method to obtain PdSe_(2) nanosheets is introduced,and large-area synthesis strate-gies are explained with respect to chemical vapor deposition and metal selenization.Next,the electronic and optoelectronic properties of PdSe_(2) and related hetero-structures,such as field-effect transistors,photodetectors,sensors,and thermoelec-tric devices,are discussed.Subsequently,the integration of systems into infrared image sensors on the basis of PdSe_(2) van der Waals heterostructures is explored.Finally,future opportunities are highlighted to serve as a general guide for physicists,chemists,materials scientists,and engineers.Therefore,this com-prehensive review may shed light on the research conducted by the 2D material community.
基金supported by National Key Research and Development Program(No.2022YFE0124200)National Natural Science Foundation of China(No.U2241221)+9 种基金J.P.thanks the Natural Science Foundation of Shandong Province for Excellent Young Scholars(YQ2022041)the fund(No.SKT2203)from the State Key Laboratories of Transducer TechnologyShanghai Institute of Microsystem and Information Technology,Chinese Academy of Sciences for support.W.Z.thanks the Major Scientific and Technological Innovation Project of Shandong Province(2021CXGC010603)NSFC(No.52022037)Taishan Scholars Project Special Funds(TSQN201812083)The Project was supported by the Foundation(No.GZKF202107)of State Key Laboratory of Biobased Material and Green PapermakingQilu University of Technology,Shandong Academy of Sciences.M.H.R.thanks NSFC(No.52071225)the National Science Center and the Czech Republic under the European Regional Development Fund(ERDF)“Institute of Environmental Technology-Excellent Research”(No.CZ.02.1.01/0.0/0.0/16_019/0000853)the SinoGerman Center for Research Promotion(SGC)for support(No.GZ 1400).
文摘Flexible electronics has emerged as a continuously growing field of study.Two-dimensional(2D)materials often act as conductors and electrodes in elec-tronic devices,holding significant promise in the design of high-performance,flexible electronics.Numerous studies have focused on harnessing the potential of these materials for the development of such devices.However,to date,the incorporation of 2D materials in flexible electronics has rarely been summa-rized or reviewed.Consequently,there is an urgent need to develop compre-hensive reviews for rapid updates on this evolving landscape.This review covers progress in complex material architectures based on 2D materials,including interfaces,heterostructures,and 2D/polymer composites.Addition-ally,it explores flexible and wearable energy storage and conversion,display and touch technologies,and biomedical applications,together with integrated design solutions.Although the pursuit of high-performance and high-sensitivity instruments remains a primary objective,the integrated design of flexible electronics with 2D materials also warrants consideration.By combin-ing multiple functionalities into a singular device,augmented by machine learning and algorithms,we can potentially surpass the performance of existing wearable technologies.Finally,we briefly discuss the future trajectory of this burgeoning field.This review discusses the recent advancements in flex-ible sensors made from 2D materials and their applications in integrated archi-tecture and device design.
基金financially supported by National Natural Science Foundation of China(No.61874137)。
文摘A recent progress in new emerging two-dimensional(2 D)materials has provided promising opportunity for gas sensing in ultra-low detectable concentration.In this work,we have demonstrated a flexible NO2 gas sensor with porous structure graphene on polyethylene terephthalate substrates operating at room temperature.The gas sensor exhibited good performance with response of 1.2%and a fast response time within 30 s after exposure to50×10^-9 NO2 gas.As porous structure of graphene increased the surface area,the sensor showed high sensitivity of ppb level for NO2 detection.Au nanoparticles were decorated on the surface of the porous structure graphene skeleton,resulting in an incensement of response compared with pristine graphene.Au nanoparticles-decorated graphene exhibits not only better sensitivity(1.5-1.6 times larger than pristine graphene)for NO2 gas detection,but also fast response.The sensor was found to be robust and sensitive under the cycling bending test,which could also be ascribed to the merits of graphene.This porous structure graphene-based gas sensor is expected to enable a simple and inexpensive flexible gas sensing platform.
基金the Chinese Academy of Engineering (Nos. 2019-ZD-25-04, 2019-ZD31-03, 2019-ZD-27-03, 2020-JJZD-1 and 2021-HYZD-6)。
文摘Biomedical materials have received increasing attention in recent decades and have been used in medical applications to advance patient care,such as prosthetic implants,tissue repair and regeneration,drug delivery systems,pharmaceutical or biological therapy products,and sensitive diagnostic technologies.Among different types of biomedical materials,nonferrous metals and related materials(NMRMs)are important and attractive candidates.The updating of biomedical NMRMs and devices heavily relies on original research and applicationoriented innovation.Here,we provide recent research findings and succinct insights into the developments in NMRMs for biomedical applications in China,including the use of titanium,magnesium,copper,zinc,cobalt,zirconium,hafnium,niobium,rhenium,tantalum,tungsten,silver,gold,platinum,palladium,their alloys and compounds,rare earths,high-entropy alloys,and liquid metals.Finally,the literature review concludes with several possible directions of NMRMs for new and future developments in biomedical engineering.
基金supported by the National Natural Science Foundation of China (No. 51701010)the Beijing Jiaotong University Foundation for youth scientists (No. No.2017RC013)+1 种基金the Project National United Engineering Laboratory for Advanced Bearing Tribology-Henan University of Science and Technology (No. 201805)the Beijing Government Funds for the Constructive Project of Central Universities (No. 353139535)
文摘The dry sliding wear behavior of Ti_2AlC reinforced AZ91 magnesium composites was investigated at sliding velocity of 0.5 m/s under loads of 10, 20, 40 and 80 N using pin-on-disk configuration against a Cr15 steel disc. Wear rates and friction coefficients were registered during wear tests. Worn tracks and wear debris were examined by scanning electron microscopy, energy dispersive X-ray spectrometry and transmission electron microscopy in order to obtain the wear mechanisms of the studied materials. The main mechanisms were characterized as the magnesium matrix oxidation and self-lubrication of Ti_2AlC MAX phase. In all conditions, the composites exhibit superior wear resistance and self-lubricated ability than the AZ91 Mg alloy. In addition, the anisotropic mechanisms in tribological properties of textured Ti_2AlC-Mg composites were confirmed and discussed.
基金financially supported by the National Natural Science Foundation of China (Nos.62074018 and 62174015)the Developing Project of Science and Technology of Jilin Province (No.20200301052RQ)+1 种基金the Project of Education Department of Jilin Province (No.JJKH20210831KJ)the Science and Technology Foundation of State Grid Corporation of China (No. SGTJDK00DYJS2000148)
文摘In the field of glucose sensors,the development of inexpensive and high-efficiency electrochemical glucose sensors is the current research hotspot.In this paper,CuO-Co_(3)O_(4)composite with a prickly-sphere-like morphology is prepared by the facile hydrothermal method for the non-enzymatic electrochemical glucose detection.X-ray diffraction,scanning electron microscopy,transmission electron microscopy,energy-dispersive X-ray spec-troscopy,and X-ray photoelectron spectroscopy are used to analyze the structure,composition,and morphology of the material.In addition,the electrochemical catalytic perfor-mance of CuO-Co_(3)O_(4)to glucose is obtained by cyclic voltammetry and chronoamperometry.The excellent elec-trochemical sensing performance may be attributed to the large number of catalytic sites in the prickly-sphere-like composite and the synergistic effect of Cu and Co.Under an applied voltage of 0.55 V,CuO-Co_(3)O_(4)composite shows sensitivity to glucose(1503.45μA·(mmol·L^(-1))^(-1)-cm^(-2)),a low detection limit(21.95μmol·L^(-1)),excellent selectivity,a high level of reproducibility,and good sta-bility.This indicates that the CuO-Co_(3)O_(4)composite has a broad prospect of non-enzymatic glucose sensing application.
基金supported by the Fundamental Research Funds for Central Universities and also supported by the National Key R&D Program of China(Grant No.2016YFC1402504).
文摘MXene-based hydrogels have drawn considerable attention as flexible and wearable sensors.However,the application of MXene-based hydrogels after sensing failure has rarely been investigated,which is of great significance for expanding their engineering application.In this work,multifunctional mineral MXene hydrogels(MMHs)were synthesized via a simple method inspired by biomineralization.The prepared MMHs were stretchable,self-healable and conductive,and can be used to fabricate wearable tensile strain sensors showing a super-wide sensing range with excellent sensitivity.MMHs-based strain sensors were designed to be directly attached to the skin surface to detect tiny and large human motions.In addition,with the advantages of a large specific area,excellent hydrophilicity and abundant active adsorption sites for MXene nanosheets and hydrogels,dehydrated MMHs were used as highly efficient adsorbents for the removal of strontium ions from aqueous solutions.This work shows the great potential of MXene in promoting the development of nextgeneration functional materials.
基金financially supported by the Key R&D Program of Ministry of Science and Technology(No.2017YFB0305400)。
文摘Impurities and their distributions in osmium targets for M-type cathodes affect the coating quality on porous tungsten and cathode emission performance.Glow discharge mass spectrometry(GDMS)and X-ray photoelectron spectroscopy(XPS)were used to analyze the impurity contents and distributions in the osmium target.The chemical states of impurity elements were analyzed and characterized.The total amount of metallic impurity in the target was lower than 0.01 wt%.
基金the financial support from State Key Laboratory of Advanced Materials for Smart Sensing,GRINM Group Co.,Ltd.
文摘To improve the nitriding resistance of Zr_(2)Fe alloy,the Ce-added Zr_(2)(Fe_(1-x)Ni_(x))(x=0,0.15,0.3,0.5)alloys were prepared by magnetic levitation melting method.The effects of Ni substitution for Fe on the phase structure,hydrogen and nitrogen absorption properties of the alloys were investigated by X-ray diffraction,scanning electron microscopy and p-c isotherm measurements.The experimental results show that Ni substitution can effectively inhibit the formation of both α-Zr and ZrFe_(2) phases and promote the formation of C16 structure Zr_(2)(Fe,Ni)phase,causing Ni-substituted alloys to exhibit low nitrogen absorption rate and capacity.At 623 K under 0.5 MPa nitrogen pressure,the nitrogen absorption capacity of Ce-added Zr_(2)(Fe_(0.5)Ni_(0.5))alloy reaches to 0.8 mL/g,much lower than that of Zr_(2)Fe alloy(1.5 mL/g).Ni substitution decreases the crystal cell volume of the C_(16)Zr_(2)(Fe,Ni)phase,resulting in an increase in the hydrogen absorption equilibrium pressure.At 623 K under 0.05 MPa hydrogen pressure,the hydrogen absorption capacity decreases from 1.46 wt%of Zr_(2)Fe alloy to 1.41 wt%of Ce-added Zr_(2)(Fe_(0.5)Ni_(0.5))alloy.
基金financially supported by the Science and Technology Program of Beijing Municipal Science and Technology Commission (No.Z201100006820084)the National Natural Science Foundation of China (Nos.92064003,91964202 and 61904194)the Youth Innovation Promotion Association,Chinese Academy of Sciences under grant (Nos.2023130 and Y9YQ01R004)。
文摘In this work,a conventional HfO_(2) gate dielectric layer is replaced with a 3-nm ferroelectric(Fe) HZO layer in the gate stacks of advanced fin field-effect transistors(FinFETs).Fe-induced characteristics,e.g.,negative drain induced barrier lowering(N-DIBL) and negative differential resistance(NDR),are clearly observed for both p-and n-type HZO-based FinFETs.These characteristics are attributed to the enhanced ferroelectricity of the 3-nm hafnium zirconium oxide(HZO) film,caused by Al doping from the TiAlC capping layer.This mechanism is verified for capacitors with structures similar to the FinFETs.Owing to the enhanced ferroelectricity and N-DIBL phenomenon,the drain current(I_(DS))of the HZO-FinFETs is greater than that of HfO_(2)-FinFETs and obtained at a lower operating voltage.Accordingly,circuits based on HZO-FinFET achieve higher performance than those based on HfO_(2)-FinFET at a low voltage drain(V_(DD)),which indicates the application feasibility of the HZO-FinFETs in the ultralow power integrated circuits.
基金financially supported by the National Natural Science Foundation of China(Nos.62074018,62174015 and 62275032)the Developing Project of Science and Technology of Jilin Province(No.20210509061RQ)+3 种基金the Natural Science Foundation of Jilin Province(No.20210101473JC)National Key R&D Program of China(No.2021YFB3201901)The Natural Science Foundation of Chongqing China(No.cstc2021jcyjmsxmX1060)supported by R&D project of Collighter Co.,Ltd。
文摘High-performance type-Ⅱsuperlattices ofⅢ-Ⅴsemiconductor materials play an important role in the development and application of infrared optoelectronic devices.Improving the quality of epitaxial materials and clarifying the luminescent mechanism are of great significance for practic al applic ations.In this work,strain-balanced and high-quality In As/In_(x)Ga_(1-x)As_(y)Sb_(1-y)superlattices without lattice mismatch were achieved on InAs and GaSb substrates successfully.Superlattices grown on In As substrate could exhibit higher crystal quality and surface flatness based on high-resolution X-ray diffraction(HRXRD)and atomic force microscopy(AFM)measurements'results.Moreover,the strain distribution phenomenon from geometric phase analysis indicates that fluctuations of alloy compositions in superlattices on GaSb substrate are more obvious.In addition,the optical properties of superlattices grown on different substrates are discussed systematically.Because of the difference in fluctuations of element composition and interface roughness of superlattices on different substrates,the superlattices grown on In As substrate would have higher integral intensity and narrower full-width at half maximum of long-wave infrared emission.Finally,the thermal quenching of emission intensity indicates that the superlattices grown on the In As substrate have better recombination ability,which is beneficial for increasing the operating temperature of infrared optoelectronic devices based on this type of superlattices.
基金financially supported by the National Natural Science Foundation of China (No.51477012)Beijing Nova Program (No.xx2016046)。
文摘Dielectric and energy storage properties of PbOSrO-Na_(2)O-Nb_(2)O_(5)-SiO_(2)(PSNNS) thin films with annealing temperature from 700 to 850 ℃ were investigated by measuring their capacitance-electric filed curve and hysteresis loops.The results show that the highest dielectric constant and energy density are 81.2 and 17.0 J·cm^(-3),respectively,which is obtained in the sample with annealing temperature of 800 ℃.Annealed from 700 to800 ℃,the dielectric constant and energy storage performance of PSNNS films are continuously improved.However,with annealing temperature up to 850 ℃,their dielectric constant decreases,which might be related with the removal of interfacial defects as a function of annealing temperature.Defect is one of the causes of space charge phenomenon,resulting in the increase in dielectric constant.Moreover,the micro structure analysis by X-ray diffraction(XRD) and transmission electron microscope(TEM) indicates that the change of crystallization phase and interfacial polarization takes responsibility to the results.
基金financially supported by the National Natural Science Foundation of China(52371248,52373273)National Key R&D Program of China(2021YFB3802200)+1 种基金Guangdong Basic and Applied Basic Research Foundation(2023A1515010905)Fundamental Research Funds for the Central Universities(FRF-EYIT-23-05)。
文摘Zinc and its alloys provide a scalable alternative to the list of biodegradable metals due to its moderate degradation rates and biocompatible degradation products.However,one of the challenges impeding their clinical applications is the uncontrollable and unstable interfacial reactions between zinc implants and the corrosive media.In this study,we report a facile synthesis of metal-organic framework(MOF)nanocrystal coating with tunable thickness on the high-strength Zn-0.8Li alloy matrix for controlled corrosion.The as-obtained dense and uniform MOF nanocrystals form a strong connection with the zinc matrix via coordination bond so as to maintain the mechanical properties,and meantime provide highly rough surfaces exhibiting tunable wettability.The varied MOF coating thus regulate the interface structure between the zinc matrix and corrosive media to control the degradation behavior.Excellent antibacterial activity and biocompatibility are also achieved because of the unique topology morphologies,surface superhydrophilicity,as well as the dynamic Zn^(2+)release.This study sheds valuable lights on the design of MOF-functionalized metal implants for practical use and also triggers extensive applications of MOF in biomaterials.
基金supported by the National Key Research and Development Program of China (2016YFB0700300)the National Natural Science Foundation of China (51503014, 51501008)the State Key Laboratory for Advanced Metals and Materials (2016Z-03)
文摘It is of vital importance to construct highly interconnected,macroporous photocatalyst to improve its efficiency and applicability in solar energy conversion and environment remediation.Graphitic-like C_3N_4(g-C_3N_4),as an analogy to two-dimensional(2D)graphene,is highly identified as a visible-lightresponsive polymeric semiconductor.Moreover,the feasibility of g-C_3N_4 in making porous structures has been well established.However,the preparation of macroporous g-C_3N_4 with abundant porous networks and exposure surface,still constitutes a difficulty.To solve it,we report a first facile preparation of bimodal macroporous g-C_3N_4 hybrids with abundant in-plane holes,which is simply enabled by in-situ modification through thermally treating the mixture of thiourea and SnCl_4(pore modifier)after rotary evaporation.For one hand,the formed in-plane macropores endow the g-C_3N_4 system with plentiful active sites and short,cross-plane diffusion channels that can greatly speed up mass transport and transfer.For another,the heterojunctions founded between g-C_3N_4 and SnO_2 consolidate the electron transfer reaction to greatly reduce the recombination probability.As a consequence,the resulted macroporous gC_3N_4/SnO_2 nanohybrid had a high specific surface area(SSA)of 44.3 m^2/g that was quite comparable to most nano/mesoporous g-C_3N_4 reported.The interconnected porous network also rendered a highly intensified light absorption by strengthening the light penetration.Together with the improved mass transport and electron transfer,the macroporous g-C_3N_4/SnO_2 hybrid exhibited about 2.4-fold increment in the photoactivity compared with pure g-C_3N_4.Additionally,the recyclability of such hybrid could be guaranteed after eight successive uses.
基金financially supported by the National Natural Science Foundation of China(No.61874137)Shandong Provincial Key Research and Development Program(No.2020CXGC010203)the National Key Research and Development Project(No.2019YFB2005705)。
文摘Because of the excellent light-trapping ability of black silicon,it has emerged as a versatile substrate for photothermic applications.In this paper,multi-nanostructured black silicon with wide-band mid-infrared absorption properties for application in pyroelectric detectors is reported.Black silicon is fabricated on a substrate surface masked by Ag nanoparticle arrays using single-step etching of C_(4)F_(8)and SF_(6)plasma.The low absorption of black silicon in the mid-infrared region is improved when a secondary nanostructure with Pt nanoparticles and SiO_(2)thin films is deposited on the surface of the prepared black silicon by microelectromechanical system(MEMS)processes.Electrons are scattered at particle boundary,resulting in dielectric loss to incident infrared(IR)region.Compared to single black silicon,the structure decorated with the multi-nanostructure can achieve higher infrared absorption,which is contributed to the high-dielectric loss properties of the Pt nanoparticles.Simulations and experiments show that the thickness of black silicon and number of layers of platinum particles contribute to mid-infrared absorption,with wavelength ranging from 2.5 to 20.0μm,and the absorption reaches~90%.The proposed absorber provides a promising solution for thermal detectors.
基金financially supported by the National Science and Technology Major Project of China (No. 2013ZX02303-001-002)。
文摘The effect of N_(2)-plasma-treated SiO_(2) interfacial layer on the interfacial and electrical characteristics of HfO_(2)/SiO_(2)/p-Si stacks grown by atomic layer deposition(ALD) was investigated.The microstructure and interfacial chemical bonding configuration of the HfO_(2)/SiO_(2)/Si stacks were also examined by high-resolution transmission electron microscopy(HRTEM) and X-ray photoelectron spectroscopy(XPS).Compared with the samples without N2-plasma treatment,it is found that the samples with N2-plasma treatment have less oxygen vacancy density for SiO_(2) interfacial layer and better HfO_(2)/SiO_(2) interface.In agreement with XPS analyses,electrical measurements of the samples with N2-plasma treatment show better interfacial quality,including lower interface-state density(Dit,9.3 × 1011 cm^(-2)·eV^(-1) near midgap) and lower oxidecharge density(Q_(ox),2.5 × 1012 cm^(-2)),than those of the samples without N_(2)-plasma treatment.Additionally,the samples with N_(2)-plasma treatment have better electrical performances,including higher saturation capacitance density(1.49 μF·cm^(-2)) and lower leakage current density(3.2 × 10^(-6) A·cm^(-2) at V_(g)=V_(fb)-1 V).Furthermore,constant voltage stress was applied on the gate electrode to investigate the reliability of these samples.It shows that the samples with N_(2)-plasma treatment have better electrical stability than the samples without N_(2)-plasma treatment.
基金supported by National Natural Science Foundation of China(No.61874137)。
文摘A homogeneous porous Co3 O4-ZnO nanomaterial(Zn-CoOx)was successfully fabricated by precipitationannealing route.The as-prepared Zn-CoOx exhibited good response,reliable reversibility and good selectivity towards alcohols,which attributed to the porous structure and p-n heterojunction formed between Co3 O4 and ZnO.In particular,the different Fermi levels of Co3 O4 and ZnO leaded to a further increase the depth of the space charge layer,which improved the gas sensitivity of the material from 10%to 480%.Besides,the continuous CO3 O4 leaded to a relatively lower operating temperature and resista nce.This material preparation method and bimetallic oxides could be widely used in the research and development of metal oxide gas sensitive materials and sensors.
基金financially supported by the National Natural Science Foundation of China(Nos.51101013,21374009,51971028,51590882 and 51631001)the State Key Project of Research and Development of China(No.2017YFA0206301)。
文摘Lightweight nanocomposites consisting of magnetic and dielectric units aroused intensive interest as potential high performance electromagnetic wave absorbing materials.In this work,we report a facile and efficient method to fabricate(Co,SiO_(2))/PPy composites with tunable electromagnetic properties.The absorbing properties and effective absorbing bandwidth can be regulated by controlling the content of SiO_(2) in composites.The composite shows a maximum reflection loss(RL)of-65.31 d B at 11.12 GHz with a thickness of 3.002 mm when SiO_(2) being 22 wt.%.The effective absorbing bandwidth reaches up to 5.1 GHz(8.91-14.01 GHz),which covers the entire X band(8-12 GHz).The improved impedance matching,high interfacial polarization and complex electromagnetic synergy in the composites are the key factors giving rise to the higher efficient absorption.The PPy aerogel-based nanocomposites with controllable absorption performance,lower density and strong environmental adaptability will become attractive candidates as advanced microwave absorbing materials.
基金financially supported by the National Natural Science Foundation of China (Nos. 62074018 and 61704011)the China Postdoctoral Science Foundation Funded Project (Nos. 2019M652176 and 2019M661680)+4 种基金the Developing Project of Science and Technology of Jilin Province (Nos. 20200301052RQ, 20200201266JC, 20190701029GH, 20180519017JH and 20180520177JH)the Project of Education Department of Jilin Province (No. JJKH20210831KJ)the Natural Science Foundation of Guangdong Province (No. 2020A1515010868)Shenzhen Fundamental Research Fund (No. JCYJ20180307151538972)supported by R&D project of Collighter Co., Ltd。
文摘Ga-free InAs/InAsSb type-Ⅱ superlattices(T2SL) have extensive application prospective in infrared photodetectors. Achieving higher operation temperature is critical to its commercial applications. Here, a fractional monolayer alloy method was used to grow InAsSb alloy with better controlled alloy composition. The as-grown T2SL gave eleven satellite peaks and a first satellite peak with a narrow full-width-half-maximum (FWHM) of 20.5arcsec (1 arcsec=0.01592°). Strain mapping results indicated limited Sb diffusion through the As-Sb exchange process at the interface. Moreover, unlike interface states caused by the As-Sb exchange effect, this relatively clear interface was distinctive with localized states with higher activation energies of the non-radiative recombination process ((18±1) meV and (84±12) meV at different temperature ranges), which means that this interface state introduced by fractional monolayer alloy growth method can effectively suppress Auger recombination process in T2SL. Through this interface engineering of InAs/InAsSb Type-Ⅱ superlattice, it achieved detective photoluminescence (PL) signal with the center wavelength of 9μm at 250K.