The newly discovered medium-scale Huangling uranium deposit is located in the Shuanlong area of the southeast Ordos Basin.This paper presents the systematic geochemical and zircon U-Pb studies on the Zhiluo Formation ...The newly discovered medium-scale Huangling uranium deposit is located in the Shuanlong area of the southeast Ordos Basin.This paper presents the systematic geochemical and zircon U-Pb studies on the Zhiluo Formation sandstones in the Huanling area.The data obtained play an important role in deducing the provenance and tectonic setting of the source rocks.The results show that the lower part of the Zhiluo Formation is mainly composed of felsic sedimentary rocks.The source rocks originated from a continental island arc environment in terms of tectonic setting.U-Pb ages of detrital zircons obtained can be roughly divided into three groups:170‒500 Ma,1600‒2050 Ma,and 2100‒2650 Ma.Based on the characteristics of trace elements and rare earth elements(REE)and the zircon U-Pb dating results,it is considered that the Cryptozoic Edo provenance of the Zhiluo Formation mainly includes magmatic rocks(such as granodioritic intrusions)and metamorphic rocks(such as gneiss and granulite)in the orogenic belts on the northern margin of the North China Plate and in the Alxa Block.Based on sedimentological and petrological results,it can be concluded that the provenance of clastic sediments in the Zhiluo Formation was in north-south direction.The preconcentration of uranium is relatively low in the Lower Zhiluo Formation in the Huangling area.Meanwhile,the paleocurrent system in the sedimentary period is inconsistent with the ore-bearing flow field in the mineralization period,which restricts the formation of large-scale and super-large-scale uranium deposits and ore zones in the southeast Ordos Basin.The understanding of provenance directions will provide crucial references for the Jurassic prototype recovery and paleo-geomorphology of the Ordos Basin and the prediction of potential uranium reservoirs of the basin.展开更多
Time-domain airborne electromagnetic(AEM)data are frequently subject to interference from various types of noise,which can reduce the data quality and affect data inversion and interpretation.Traditional denoising met...Time-domain airborne electromagnetic(AEM)data are frequently subject to interference from various types of noise,which can reduce the data quality and affect data inversion and interpretation.Traditional denoising methods primarily deal with data directly,without analyzing the data in detail;thus,the results are not always satisfactory.In this paper,we propose a method based on dictionary learning for EM data denoising.This method uses dictionary learning to perform feature analysis and to extract and reconstruct the true signal.In the process of dictionary learning,the random noise is fi ltered out as residuals.To verify the eff ectiveness of this dictionary learning approach for denoising,we use a fi xed overcomplete discrete cosine transform(ODCT)dictionary algorithm,the method-of-optimal-directions(MOD)dictionary learning algorithm,and the K-singular value decomposition(K-SVD)dictionary learning algorithm to denoise decay curves at single points and to denoise profi le data for diff erent time channels in time-domain AEM.The results show obvious diff erences among the three dictionaries for denoising AEM data,with the K-SVD dictionary achieving the best performance.展开更多
Based on the field survey of Lower Jurassic Badaowan Formation(Fm.)in Changji area of Xinjiang,China,the authors studied the sedimentary environment and provenance characteristics using the analyses of stratigraphic p...Based on the field survey of Lower Jurassic Badaowan Formation(Fm.)in Changji area of Xinjiang,China,the authors studied the sedimentary environment and provenance characteristics using the analyses of stratigraphic profiles,sedimentary structures,petrography,zircon U-Pb chronology and geochemistry.The results show that Badaowan Fm.deposited in fluvial to swamp shallow-deeplacustrine sedimentary facies deposition.Contents of Sr and ratios of Sr/Cu,Sr/Ba,Th/U,SiO_(2)/Al_(2)O_(3),V/(V+Ni),V/Cr,and Cu/Zn together indicate that Badaowan Fm.was deposited in an oxygen-poor transitional freshwater environment,under humid climatic conditions.Geochemical characteristics and Q–F–L,Qm–E–Lt,Th–Co–Zr/10,La–Th–Sc,and Th–Sc–Zr/10 discrimination diagrams indicate that the tectonic setting of the source area was a continental island arc environment.Lithological composition,Th/U ratios,and Co/Th–La/Sc,La/Th–Hf,and La/Yb–REE discrimination diagrams show that the source rocks of Badaowan Fm.were upper-crust felsic volcanic rocks.U-Pb dating of detrital zircons yields ages of 1542.3±15.0 to 232.9±3.3 Ma and mostly in the ranges of 470–410 and 370–280 Ma.A comparison of these ages with the age data from different blocks of crystalline rock in Tianshan Mountains area reveals that the sedimentary rocks in the Badaowan Fm.were sourced predominantly from the central and subordinately from the southern Tianshan Mountains during Early Jurassic.展开更多
The Mesoproterozoic Bayan Obo Group located along the northern margin of the North China Craton(NMNCC)hosts a world’s largest known rare-earth element(REE)deposit(Bayan Obo Fe-REE-Nb deposit)[1,2]and a number of larg...The Mesoproterozoic Bayan Obo Group located along the northern margin of the North China Craton(NMNCC)hosts a world’s largest known rare-earth element(REE)deposit(Bayan Obo Fe-REE-Nb deposit)[1,2]and a number of large gold deposits(eg.,Haoyaoerhugong and Zhulazhaga gold deposits;Fig.1a)[3],and has a long and protracted thermal history spanning from1.3 Ga to 250 Ma[1].The tectonic history was associated with Proterozoic rifting with carbonatite magmatism at1.3 Ga[4]and subsequent subduction-accretion processes of the Paleo-Asian Ocean[5,6].The Paleo-Asian oceanic subduction beneath the North China Craton(NCC)initiated in the Middle Silurian[7,8]and the ocean was closed in the Permian to induce the accretion of arcs and terranes with the NCC[2].This long and protracted tectonic history increases the difficulties both in dating and understanding the genesis of the Bayan Obo REE deposit and black shale-hosted gold deposits(e.g.,Haoyaoerhudong deposit).Thus,it is important to understand the thermal history of the hosting strata in order to constrain the tectonic drive and timing of polymetallic mineraliza-tion.There have been few attempts to date the multistage thermal events which the Bayan Obo Group has witnessed,predominantly because of greenschist facies overprint of the host rocks and lack of reliable geochronometers[9,10].展开更多
The Huayangchuan ore belt is located in the western segment of Xiaoqinling Orogen in the southern margin of the North China Craton(NCC),and hosts voluminous magmatism and significant U-REE-Mo-Cu-Fe polymetallic minera...The Huayangchuan ore belt is located in the western segment of Xiaoqinling Orogen in the southern margin of the North China Craton(NCC),and hosts voluminous magmatism and significant U-REE-Mo-Cu-Fe polymetallic mineralization.However,geochronological framework of the various mineralization phases in this region is poorly understood.Here,we present new Re-Os isochron ages on magnetite from the Caotan Fe deposit(2 675 ± 410 Ma,MSWD = 0.55),and on pyrite from the Jialu REE deposit(2 127 ± 280 Ma,MSWD = 1.9) and Yuejiawa Cu deposit(418 ± 23 Ma,MSWD =11.5),and Re-Os weighted average model age on pyrite from the Taoyuan Mo-U deposit(235 ± 14 Ma,MSWD = 0.17).These ages,combined with regional geology and mineralization ages from other deposits,suggest that mineralization in the Huayangchuan ore belt lasted from the Neoarchean to the Late Mesozoic.The mineralization corresponds to regional tectono-magmatic events,including the Neoarchean alkali magmatism(REE mineralization),Paleoproterozoic plagioclase-amphibolite emplacement(Fe mineralization),Paleoproterozoic pegmatite magmatism(U mineralization),Paleozoic Shangdan oceanic slab subduction-related arc magmatism(Cu mineralization),Early Mesozoic Paleo-Tethys Ocean subduction-related arc magmatism(Mo-U mineralization),and Late Mesozoic Paleo-Pacific oceanic plate subduction direction change-related Mo(-Pb) mineralization.We proposed that the Huayangchuan ore belt has undergone prolonged metallogenic evolution,and the magmatism and associated mineralization were controlled by regional geodynamic events.展开更多
基金This study was funded by the project initiated by the China Geological Survey“Investigation of sandstone-type uranium deposits in the Ordos and Qaidam Basins”(DD20190119)the National Key Research and Development Project(2018YFC0604200)the Ministry of Science and Technology of the the International Geoscience Programme(IGCP675),which is a joint endeavor of UNESCO and IUGS.
文摘The newly discovered medium-scale Huangling uranium deposit is located in the Shuanlong area of the southeast Ordos Basin.This paper presents the systematic geochemical and zircon U-Pb studies on the Zhiluo Formation sandstones in the Huanling area.The data obtained play an important role in deducing the provenance and tectonic setting of the source rocks.The results show that the lower part of the Zhiluo Formation is mainly composed of felsic sedimentary rocks.The source rocks originated from a continental island arc environment in terms of tectonic setting.U-Pb ages of detrital zircons obtained can be roughly divided into three groups:170‒500 Ma,1600‒2050 Ma,and 2100‒2650 Ma.Based on the characteristics of trace elements and rare earth elements(REE)and the zircon U-Pb dating results,it is considered that the Cryptozoic Edo provenance of the Zhiluo Formation mainly includes magmatic rocks(such as granodioritic intrusions)and metamorphic rocks(such as gneiss and granulite)in the orogenic belts on the northern margin of the North China Plate and in the Alxa Block.Based on sedimentological and petrological results,it can be concluded that the provenance of clastic sediments in the Zhiluo Formation was in north-south direction.The preconcentration of uranium is relatively low in the Lower Zhiluo Formation in the Huangling area.Meanwhile,the paleocurrent system in the sedimentary period is inconsistent with the ore-bearing flow field in the mineralization period,which restricts the formation of large-scale and super-large-scale uranium deposits and ore zones in the southeast Ordos Basin.The understanding of provenance directions will provide crucial references for the Jurassic prototype recovery and paleo-geomorphology of the Ordos Basin and the prediction of potential uranium reservoirs of the basin.
基金financially supported the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA14020102)the National Natural Science Foundation of China (Nos. 41774125,41530320 and 41804098)the Key National Research Project of China (Nos. 2016YFC0303100,2017YFC0601900)。
文摘Time-domain airborne electromagnetic(AEM)data are frequently subject to interference from various types of noise,which can reduce the data quality and affect data inversion and interpretation.Traditional denoising methods primarily deal with data directly,without analyzing the data in detail;thus,the results are not always satisfactory.In this paper,we propose a method based on dictionary learning for EM data denoising.This method uses dictionary learning to perform feature analysis and to extract and reconstruct the true signal.In the process of dictionary learning,the random noise is fi ltered out as residuals.To verify the eff ectiveness of this dictionary learning approach for denoising,we use a fi xed overcomplete discrete cosine transform(ODCT)dictionary algorithm,the method-of-optimal-directions(MOD)dictionary learning algorithm,and the K-singular value decomposition(K-SVD)dictionary learning algorithm to denoise decay curves at single points and to denoise profi le data for diff erent time channels in time-domain AEM.The results show obvious diff erences among the three dictionaries for denoising AEM data,with the K-SVD dictionary achieving the best performance.
基金Supported by Geological Survey Project of China(No.K45E001012,2019–002).
文摘Based on the field survey of Lower Jurassic Badaowan Formation(Fm.)in Changji area of Xinjiang,China,the authors studied the sedimentary environment and provenance characteristics using the analyses of stratigraphic profiles,sedimentary structures,petrography,zircon U-Pb chronology and geochemistry.The results show that Badaowan Fm.deposited in fluvial to swamp shallow-deeplacustrine sedimentary facies deposition.Contents of Sr and ratios of Sr/Cu,Sr/Ba,Th/U,SiO_(2)/Al_(2)O_(3),V/(V+Ni),V/Cr,and Cu/Zn together indicate that Badaowan Fm.was deposited in an oxygen-poor transitional freshwater environment,under humid climatic conditions.Geochemical characteristics and Q–F–L,Qm–E–Lt,Th–Co–Zr/10,La–Th–Sc,and Th–Sc–Zr/10 discrimination diagrams indicate that the tectonic setting of the source area was a continental island arc environment.Lithological composition,Th/U ratios,and Co/Th–La/Sc,La/Th–Hf,and La/Yb–REE discrimination diagrams show that the source rocks of Badaowan Fm.were upper-crust felsic volcanic rocks.U-Pb dating of detrital zircons yields ages of 1542.3±15.0 to 232.9±3.3 Ma and mostly in the ranges of 470–410 and 370–280 Ma.A comparison of these ages with the age data from different blocks of crystalline rock in Tianshan Mountains area reveals that the sedimentary rocks in the Badaowan Fm.were sourced predominantly from the central and subordinately from the southern Tianshan Mountains during Early Jurassic.
基金supported by the National Natural Science Foundation of China(41402042,41002064,and 42172090)the Natural Sciences and Engineering Research Council of Canada(NSERC)Discovery Grant。
文摘The Mesoproterozoic Bayan Obo Group located along the northern margin of the North China Craton(NMNCC)hosts a world’s largest known rare-earth element(REE)deposit(Bayan Obo Fe-REE-Nb deposit)[1,2]and a number of large gold deposits(eg.,Haoyaoerhugong and Zhulazhaga gold deposits;Fig.1a)[3],and has a long and protracted thermal history spanning from1.3 Ga to 250 Ma[1].The tectonic history was associated with Proterozoic rifting with carbonatite magmatism at1.3 Ga[4]and subsequent subduction-accretion processes of the Paleo-Asian Ocean[5,6].The Paleo-Asian oceanic subduction beneath the North China Craton(NCC)initiated in the Middle Silurian[7,8]and the ocean was closed in the Permian to induce the accretion of arcs and terranes with the NCC[2].This long and protracted tectonic history increases the difficulties both in dating and understanding the genesis of the Bayan Obo REE deposit and black shale-hosted gold deposits(e.g.,Haoyaoerhudong deposit).Thus,it is important to understand the thermal history of the hosting strata in order to constrain the tectonic drive and timing of polymetallic mineraliza-tion.There have been few attempts to date the multistage thermal events which the Bayan Obo Group has witnessed,predominantly because of greenschist facies overprint of the host rocks and lack of reliable geochronometers[9,10].
基金financially supported by the Academician Workstation of Sino Shaanxi Nuclear Industry Group(Nos.ZSH-YS190101 and ZSH-YS180101)Major Project of Basic and Applied Basic Research in Guangdong Province(No.2019B030302013)。
文摘The Huayangchuan ore belt is located in the western segment of Xiaoqinling Orogen in the southern margin of the North China Craton(NCC),and hosts voluminous magmatism and significant U-REE-Mo-Cu-Fe polymetallic mineralization.However,geochronological framework of the various mineralization phases in this region is poorly understood.Here,we present new Re-Os isochron ages on magnetite from the Caotan Fe deposit(2 675 ± 410 Ma,MSWD = 0.55),and on pyrite from the Jialu REE deposit(2 127 ± 280 Ma,MSWD = 1.9) and Yuejiawa Cu deposit(418 ± 23 Ma,MSWD =11.5),and Re-Os weighted average model age on pyrite from the Taoyuan Mo-U deposit(235 ± 14 Ma,MSWD = 0.17).These ages,combined with regional geology and mineralization ages from other deposits,suggest that mineralization in the Huayangchuan ore belt lasted from the Neoarchean to the Late Mesozoic.The mineralization corresponds to regional tectono-magmatic events,including the Neoarchean alkali magmatism(REE mineralization),Paleoproterozoic plagioclase-amphibolite emplacement(Fe mineralization),Paleoproterozoic pegmatite magmatism(U mineralization),Paleozoic Shangdan oceanic slab subduction-related arc magmatism(Cu mineralization),Early Mesozoic Paleo-Tethys Ocean subduction-related arc magmatism(Mo-U mineralization),and Late Mesozoic Paleo-Pacific oceanic plate subduction direction change-related Mo(-Pb) mineralization.We proposed that the Huayangchuan ore belt has undergone prolonged metallogenic evolution,and the magmatism and associated mineralization were controlled by regional geodynamic events.