This paper is devoted to understanding the stability of perturbations around the hydrostatic equilibrium of the Boussinesq system in order to gain insight into certain atmospheric and oceanographic phenomena.The Bouss...This paper is devoted to understanding the stability of perturbations around the hydrostatic equilibrium of the Boussinesq system in order to gain insight into certain atmospheric and oceanographic phenomena.The Boussinesq system focused on here is anisotropic,and involves only horizontal dissipation and thermal damping.In the 2D case R^(2),due to the lack of vertical dissipation,the stability and large-time behavior problems have remained open in a Sobolev setting.For the spatial domain T×R,this paper solves the stability problem and gives the precise large-time behavior of the perturbation.By decomposing the velocity u and temperatureθinto the horizontal average(ū,θ)and the corresponding oscillation(ū,θ),we can derive the global stability in H~2 and the exponential decay of(ū,θ)to zero in H^(1).Moreover,we also obtain that(ū_(2),θ)decays exponentially to zero in H^(1),and thatū_(1)decays exponentially toū_(1)(∞)in H^(1)as well;this reflects a strongly stratified phenomenon of buoyancy-driven fluids.In addition,we establish the global stability in H^(3)for the 3D case R^(3).展开更多
Green energy generation is an indispensable task to concurrently resolve fossil fuel depletion and environmental issues to align with the global goals of achieving carbon neutrality.Photocatalysis,a process that trans...Green energy generation is an indispensable task to concurrently resolve fossil fuel depletion and environmental issues to align with the global goals of achieving carbon neutrality.Photocatalysis,a process that transforms solar energy into clean fuels through a photocatalyst,represents a felicitous direction toward sustainability.Eco-rich metal-free graphitic carbon nitride(g-C_(3)N_(4))is profiled as an attractive photocatalyst due to its fascinating properties,including excellent chemical and thermal stability,moderate band gap,visible light-active nature,and ease of fabrication.Nonetheless,the shortcomings of g-C_(3)N_(4)include fast charge recombination and limited surface-active sites,which adversely affect photocatalytic reactions.Among the modification strategies,point-to-face contact engineering of 2D g-C_(3)N_(4)with 0D nanomaterials represents an innovative and promising synergy owing to several intriguing attributes such as the high specific surface area,short effective charge-transfer pathways,and quantum confinement effects.This review introduces recent advances achieved in experimental and computational studies on the interfacial design of 0D nanostructures on 2D g-C_(3)N_(4)in the construction of point-to-face heterojunction interfaces.Notably,0D materials such as metals,metal oxides,metal sulfides,metal selenides,metal phosphides,and nonmetals on g-C_(3)N_(4)with different charge-transfer mechanisms are systematically discussed along with controllable synthesis strategies.The applications of 0D/2D g-C_(3)N_(4)-based photocatalysts are focused on solar-to-energy conversion via the hydrogen evolution reaction,the CO_(2)reduction reaction,and the N2 reduction reaction to evaluate the photocatalyst activity and elucidate reaction pathways.Finally,future perspectives for developing high-efficiency 0D/2D photocatalysts are proposed to explore potential emerging carbon nitride allotropes,large-scale production,machine learning integration,and multidisciplinary advances for technological breakthroughs.展开更多
Betavoltaic cells(BCs)are promising self-generating power cells with long life and high power density.However,the low energy conversion efficiency(ECE)has limitations in practical engineering applications.Widebandgap ...Betavoltaic cells(BCs)are promising self-generating power cells with long life and high power density.However,the low energy conversion efficiency(ECE)has limitations in practical engineering applications.Widebandgap semiconductors(WBGSs)with three-dimensional(3-D)nanostructures are ideal candidates for increasing the ECE of BCs.This paper proposes hydrothermally grown ZnO nanorod arrays(ZNRAs)for ^(63)Ni-powered BCs.A quantitative model was established for simulation using the parameter values of the dark characteristics,which were obtained from the experimental measurements for a simulated BC based on a Ni-incorporated ZNRAs structure.Monte Carlo(MC)modeling and simulation were conducted to obtain the values of the β energy deposited in ZNRAs with different nanorod spacings and heights.Through the simulation and optimization of the 3-D ZNRAs and 2-D ZnO bulk structures,the performance of the ^(63)Ni-powered BCs based on both structures was evaluated using a quantitative model.The BCs based on the 3-D ZNRAs structure and 2-D ZnO bulk structure achieved a maximum ECE of 10.1%and 4.69%,respectively,which indicates the significant superiority of 3-D nanostructured WBGSs in increasing the ECE of BCs.展开更多
The generation of green hydrogen(H_2) energy is of great significance to solve worldwide energy and environmental issues. Reduced Ti based photocatalyst has recently attracted intensive attention due to its excellent ...The generation of green hydrogen(H_2) energy is of great significance to solve worldwide energy and environmental issues. Reduced Ti based photocatalyst has recently attracted intensive attention due to its excellent photocatalytic activity, while the synthesis of reduced Ti based photocatalysts with high stability is still a great challenge. Here, we report a facile method for synthesis of reduced Ti metal organic frameworks(small amounts of Pt incorporated) encapsulated BP(BP/R-Ti-MOFs/Pt) hybrid nanomaterial with enhanced photocatalytic activity. The strong interaction between Ti and P reduces the valence state of the binding Ti^(4+)on the BP surface, forming abundant reduced Ti^(4+)within R-Ti-MOFs/BP. Such reduced Ti^(4+)render R-Ti-MOFs/BP efficient charge transfer and excellent light absorption capability, thus promote the photocatalytic H_2 production efficiency. Furthermore, the Ti-P interaction stabilizes both reduced Ti^(4+)and BP during the photocatalytic reaction, which greatly enhanced the stability of the obtained BP/R-TiMOFs/Pt photocatalyst.展开更多
Efficient nitrogen fixation through a reactive plasma process attracts intense interest due to the environmental issues induced by the conventional Haber–Bosch method. In this work, we present a direct and simple fix...Efficient nitrogen fixation through a reactive plasma process attracts intense interest due to the environmental issues induced by the conventional Haber–Bosch method. In this work, we present a direct and simple fixation routine without any catalysts for nitrogen in open air using an atmospheric-pressure pin-to-solution plasma electrolytic system. Nitrate, nitrite, and ammonia as the nitrogen-derived chemicals in solution were analyzed as indicators under various discharge conditions to estimate the energy efficiency of this process. The results show that the nitrogen fixation process was much more efficient by the pin-positive discharge compared to the negative one. N chemicals preferred to be formed when the solution was of negative polarity. It was also found that, with the help of solution circulation, the energy efficiency was enhanced compared to that of static liquid. However, an inverse trend was observed with the increase of the discharge current. Further study by optical emission spectroscopy indicates the important roles of active N2* and water vapour and their derived species near the plasma–water interface in the fixation process.展开更多
There are plenty of issues need to be solved before the practi-cal application of Li-and Mn-rich cathodes,including the detrimental voltage decay and mediocre rate capability,etc.Element doping can e ectively solve th...There are plenty of issues need to be solved before the practi-cal application of Li-and Mn-rich cathodes,including the detrimental voltage decay and mediocre rate capability,etc.Element doping can e ectively solve the above problems,but cause the loss of capacity.The introduction of appropriate defects can compensate the capacity loss;however,it will lead to structural mismatch and stress accumulation.Herein,a three-in-one method that combines cation–polyanion co-doping,defect construction,and stress engineering is pro-posed.The co-doped Na^(+)/SO_(4)^(2-)can stabilize the layer framework and enhance the capacity and voltage stability.The induced defects would activate more reac-tion sites and promote the electrochemical performance.Meanwhile,the unique alternately distributed defect bands and crystal bands structure can alleviate the stress accumulation caused by changes of cell parameters upon cycling.Consequently,the modified sample retains a capacity of 273 mAh g^(-1)with a high-capacity retention of 94.1%after 100 cycles at 0.2 C,and 152 mAh g^(-1)after 1000 cycles at 2 C,the corresponding voltage attenuation is less than 0.907 mV per cycle.展开更多
The Wnt/β-catenin signaling pathway plays a crucial role in the embryonic development of metazoans. Although the pathway has been studied extensively in many model animals, its function in amphioxus, the most primiti...The Wnt/β-catenin signaling pathway plays a crucial role in the embryonic development of metazoans. Although the pathway has been studied extensively in many model animals, its function in amphioxus, the most primitive chordate, remains largely uncharacterized. To obtain basic data for functional analysis, we identified and isolated seven genes (Lrp5/6, Dvl, APC, Ckla, CklS, Gsk3β, and Gro) of the Wnt/β-catenin signaling pathway from the amphioxus (Branchiostoma floridae) genome. Phylogenetic analysis revealed that amphioxus had fewer members of each gene family than that found in vertebrates. Whole-mount in situ hybridization showed that the genes were maternally expressed and broadly distributed throughout the whole embryo at the cleavage and blastula stages. Among them, Dvl was expressed asymmetrically towards the animal pole, while the others were evenly distributed in all blastomeres. At the mid-gastrula stage, the genes were specifically expressed in the primitive endomesoderm, but displayed different patterns. When the embryo developed into the neurula stage, the gene expressions were mainly detected in either paraxial somites or the tail bud. With the development of the embryo, the expression levels further decreased gradually and remained only in some pharyngeal regions or the tail bud at the larva stage. Our results suggest that the Wnt/β-catenin pathway might be involved in amphioxus somite formation and posterior growth, but not in endomesoderm specification.展开更多
Dual argon plasmas ignited by one direct current power source are used to treat an aqueous solution of hydrogen tetrachloroaurate-(Ⅲ)trihydrate(HAuCl_(4)·3H_(2)O)which is contained in an H-type electrochemical c...Dual argon plasmas ignited by one direct current power source are used to treat an aqueous solution of hydrogen tetrachloroaurate-(Ⅲ)trihydrate(HAuCl_(4)·3H_(2)O)which is contained in an H-type electrochemical cell.The solution contained in one cell acts as a cathode,and in the other as an anode.Experiments are carried out to directly visualize the formation process of gold nanoparticles(Au NPs)in separated cells of the H-type electrochemical reactor.The results and analyzes suggest that hydrogen peroxide and hydrated electrons generated from the plasma-liquid interactions play the roles of reductants in the solutions,respectively.Hydrogen peroxide can be generated in the case of the liquid being a cathode or an anode,while most of hydrated electrons are formed in the case of the liquid being an anode.Therefore,the reduction of the AuCl_(4)−ions is mostly attributed to the hydrogen peroxide as the liquid acts as a cathode,while to the hydrogen peroxide and hydrated electrons as the liquid acts as an anode.Moreover,the p H value of the solution can be used to tune the formation processes and final form of the Au NPs due to its mediation of reductants.展开更多
AIM:To study the effect of palmitoylethanolamide(PEA)on apoptosis of retinal pigment epithelial(RPE)cells induced by all-trans retinal(at RAL)and to explore the possible molecular mechanism.METHODS:Cell Titer 96■Aque...AIM:To study the effect of palmitoylethanolamide(PEA)on apoptosis of retinal pigment epithelial(RPE)cells induced by all-trans retinal(at RAL)and to explore the possible molecular mechanism.METHODS:Cell Titer 96■Aqueous One Solution Cell Proliferation Assay(MTS)was used to detect the effect of PEA on human-derived retinal epithelial cells(ARPE-19)viability induced by at RAL.A Leica DMi8 inverted microscope was used to observe cell morphology.Reactive oxygen species(ROS)production was evaluated with 2’,7’-dichlorodihydrofluorescein diacetate(H2DCFDA)staining and fluorescence microscopy.Expression of c-Jun N-terminal kinase(JNK),phosphorylated JNK(p-JNK),c-Jun,phosphorylated c-Jun(p-c-Jun),Bak,cleaved caspase-3,C/EBP homologous protein(CHOP),and binding(Bip)protein levels were tested by Western blot.Abca4-/-Rdh8-/-mice,mouse models of at RAL clearance defects which displays some symbolic characteristics of dry age-related macular degeneration(AMD)and Stargardt disease(STGD1).In the animal models,PEA was injected intraperitoneally.The full-field electroretinogram was used to detect visual function under scotopic conditions traced from mice.Optical coherence tomography showed reconstitution or thickening of the retinal pigment epithelium layer.Effect of PEA on fundus injury induced by light in Abca4-/-Rdh8-/-mice was observed by fundus photography.RESULTS:PEA ameliorated ARPE-19 cells apoptosis and inhibited ROS(including mitochondrial ROS)production induced by at RAL.PEA improved the retinal functional,prohibited both RPE and photoreceptor from death,ameliorates light-induced fundus impairment in Abca4-/-Rdh8-/-mice.In vitro and in vivo,PEA inhibited JNK,p-JNK,c-Jun,p-c-Jun,Bak,cleaved caspase-3,CHOP,and Bip protein levels induced by all-trans retinal in ARPE-19 cells.CONCLUSION:PEA has effect on treating RPE cells apoptosis in retinopathy caused by at RAL accumulation.PEA is a potential treatment strategy for dry AMD and STGD1.The molecular mechanism is affecting the ROS-JNKCHOP signaling pathway partly.展开更多
Fast and accurate measurement of the volume of earthmoving materials is of great signifcance for the real-time evaluation of loader operation efciency and the realization of autonomous operation. Existing methods for ...Fast and accurate measurement of the volume of earthmoving materials is of great signifcance for the real-time evaluation of loader operation efciency and the realization of autonomous operation. Existing methods for volume measurement, such as total station-based methods, cannot measure the volume in real time, while the bucket-based method also has the disadvantage of poor universality. In this study, a fast estimation method for a loader’s shovel load volume by 3D reconstruction of material piles is proposed. First, a dense stereo matching method (QORB–MAPM) was proposed by integrating the improved quadtree ORB algorithm (QORB) and the maximum a posteriori probability model (MAPM), which achieves fast matching of feature points and dense 3D reconstruction of material piles. Second, the 3D point cloud model of the material piles before and after shoveling was registered and segmented to obtain the 3D point cloud model of the shoveling area, and the Alpha-shape algorithm of Delaunay triangulation was used to estimate the volume of the 3D point cloud model. Finally, a shovel loading volume measurement experiment was conducted under loose-soil working conditions. The results show that the shovel loading volume estimation method (QORB–MAPM VE) proposed in this study has higher estimation accuracy and less calculation time in volume estimation and bucket fll factor estimation, and it has signifcant theoretical research and engineering application value.展开更多
We study a spatiotemporal EIT problem with a dynamical boundary condition for the fractional Dirichlet-to-Neumann operator with a critical exponent.There are three major ingredients in this paper.The first is the fini...We study a spatiotemporal EIT problem with a dynamical boundary condition for the fractional Dirichlet-to-Neumann operator with a critical exponent.There are three major ingredients in this paper.The first is the finite time blowup and the decay estimate of the global solution with a lower-energy initial value.The second ingredient is the L^(q)(2 ≤q <∞) estimate of the global solution applying the Moser iteration,which allows us to show that any global solution is a classical solution.The third,which is the main ingredient of this paper,explores the long time asymptotic behavior of global solutions close to the stationary solution and the bubbling phenomenons by means of a concentration compactness principle.展开更多
This work presents a strategy for the mesoscopic engineering of hierarchically structured sodium alginate(SA)aerogels to enhance the macroscopic performance.The strategy was implemented by meso-functionalizing and reo...This work presents a strategy for the mesoscopic engineering of hierarchically structured sodium alginate(SA)aerogels to enhance the macroscopic performance.The strategy was implemented by meso-functionalizing and reorganizing SA aerogels via controlled heterogeneous nucleation,in which microcrystalline cellulose-manganese dioxide(MCC-MnO_(2))nano-crystallites worked as template.Due to the short rod-like structure and abundant hydroxyl groups of MCC-MnO_(2),the organized mesostructure of SA aerogels was reconstructed during the assembly of SA molecule chains,which gave rise to a significant enhancement in macroscopic performance of SA areogels.For instance,the functionalized and reconstructed MCC-MnO_(2)/SA aerogels acquired a more than 70%increase in mechanical strength with an excellent deformation recovery.Furthermore,an almost double enhancement of removal capacity for metal ions(i.e.,Cu^(2+)and Pb^(2+))and organic dyes(i.e.,congo red and methylene blue)was obtained for MnO_(2)/SA aerogels,with an 87%repossession of the pollutants removal performance after 5 operation cycles.展开更多
We presented a numerical examination of the effect of microtexturing negative rings' structure on the tribological performance of parallel bearing couples' cell. Three mcirotexturing rings, which are circle, s...We presented a numerical examination of the effect of microtexturing negative rings' structure on the tribological performance of parallel bearing couples' cell. Three mcirotexturing rings, which are circle, square and ellipse, were chosen and the analysis model were established. We used the Reynolds equation coupled with finite difference method and successive over relaxation Gauss-Seidel iterative method to solve the Newtonian flow's hydrodynamics within a bearing couple. The effect of texture density and radius ratio(thickness) of the microtexturing rings were investigated on the tribological performance under the similar operating conditions. The numerical simulation reveals that: 1) The microtexturing rings' structure can homogenize the local pressure much uniformly within the bearing cell. 2) The tribological performance is determined mainly by the microtexturing rings' geometry and texture density, and the thickness of the rings' structure can help to change the quantitative values. 3) The square and circle rings' s microtexturing surface can slightly improve the frictional performance with the bearing cells' gap, while the ellipse ring's surface may decrease the frictional performance. 4) The ellipse rings' microtexturing surface can achieve the minimum spacing gap but the maximum friction coefficient of the bearing couple, and then the circle and square rings' structure take the second and third place, respectively.展开更多
The quantification of hydrogen peroxide(H_(2)O_(2))generated in the plasma-liquid interactions is of great importance,since the H_(2)O_(2)species is vital for the applications of the plasma-liquid system.Herein,we rep...The quantification of hydrogen peroxide(H_(2)O_(2))generated in the plasma-liquid interactions is of great importance,since the H_(2)O_(2)species is vital for the applications of the plasma-liquid system.Herein,we report on in situ quantification of the aqueous H_(2)O_(2)(H_(2)O_(2)aq)using a colorimetric method for the DC plasma-liquid systems with liquid as either a cathode or an anode.The results show that the H_(2)O_(2)aqyield is 8-12 times larger when the liquid acts as a cathode than when the liquid acts as an anode.The conversion rate of the gaseous OH radicals to H_(2)O_(2)aqis 4-6 times greater in the former case.However,the concentrations of dissolved OH radicals for both liquid as cathode and anode are of the same order of tens of n M.展开更多
In this paper,we establish some regularity conditions on the density and velocity fields to guarantee the energy conservation of the weak solutions for the three-dimensional compressible nematic liquid crystal flow in...In this paper,we establish some regularity conditions on the density and velocity fields to guarantee the energy conservation of the weak solutions for the three-dimensional compressible nematic liquid crystal flow in the periodic domain.展开更多
Although visible femtosecond lasers based on nonlinear frequency conversion of Ti:sapphire femtosecond oscillators or near-infrared ultrafast lasers have been well developed,limitations in terms of footprint,cost,and ...Although visible femtosecond lasers based on nonlinear frequency conversion of Ti:sapphire femtosecond oscillators or near-infrared ultrafast lasers have been well developed,limitations in terms of footprint,cost,and efficiency have called for alternative laser solutions.The fiber femtosecond mode-locked oscillator as an ideal solution has achieved great success in the 0.9 to 3.5μm infrared wavelengths,but remains an outstanding challenge in the visible spectrum(390 to 780 nm).Here,we tackle this challenge by introducing a visible-wavelength mode-locked femtosecond fiber oscillator along with an amplifier.This fiber femtosecond oscillator emits red light at 635 nm,employs a figure-nine cavity configuration,applies a double-clad Pr3þ-doped fluoride fiber as the visible gain medium,incorporates a visible-wavelength phase-biased nonlinear amplifying loop mirror(PB-NALM)for mode locking,and utilizes a pair of customized high-efficiency and high-groove-density diffraction gratings for dispersion management.Visible self-starting mode locking established by the PB-NALM directly yields red laser pulses with a minimum pulse duration of 196 fs and a repetition rate of 53.957 MHz from the oscillator.Precise control of the grating pair spacing can switch the pulse state from a dissipative soliton or a stretched-pulse soliton to a conventional soliton.In addition,a chirped-pulse amplification system built alongside the oscillator immensely boosts the laser performance,resulting in an average output power over 1W,a pulse energy of 19.55 nJ,and a dechirped pulse duration of 230 fs.Our result represents a concrete step toward high-power femtosecond fiber lasers covering the visible spectral region and could have important applications in industrial processing,biomedicine,and scientific research.展开更多
The commercial viability of lithium-sulfur batteries is still challenged by the notorious lithium polysulfides(Li PSs)shuttle effect on the sulfur cathode and uncontrollable Li dendrites growth on the Li anode.Herein,...The commercial viability of lithium-sulfur batteries is still challenged by the notorious lithium polysulfides(Li PSs)shuttle effect on the sulfur cathode and uncontrollable Li dendrites growth on the Li anode.Herein,a bi-service host with Co-Fe binary-metal selenide quantum dots embedded in three-dimensional inverse opal structured nitrogen-doped carbon skeleton(3DIO FCSe-QDs@NC)is elaborately designed for both sulfur cathode and Li metal anode.The highly dispersed FCSe-QDs with superb adsorptive-catalytic properties can effectively immobilize the soluble Li PSs and improve diffusion-conversion kinetics to mitigate the polysulfide-shutting behaviors.Simultaneously,the 3D-ordered porous networks integrated with abundant lithophilic sites can accomplish uniform Li deposition and homogeneous Li-ion flux for suppressing the growth of dendrites.Taking advantage of these merits,the assembled Li-S full batteries with 3DIO FCSe-QDs@NC host exhibit excellent rate performance and stable cycling ability(a low decay rate of 0.014%over 2,000 cycles at 2C).Remarkably,a promising areal capacity of 8.41 mAh cm^(-2)can be achieved at the sulfur loading up to 8.50 mg cm^(-2)with an ultra-low electrolyte/sulfur ratio of 4.1μL mg^(-1).This work paves the bi-serve host design from systematic experimental and theoretical analysis,which provides a viable avenue to solve the challenges of both sulfur and Li electrodes for practical Li-S full batteries.展开更多
With the increasing demand for high-precision optical components,bonnet polishing technology is increasingly being used in the polishing process of optical components owing to its high removal efficiency and high surf...With the increasing demand for high-precision optical components,bonnet polishing technology is increasingly being used in the polishing process of optical components owing to its high removal efficiency and high surface accuracy.However,it is expensive and difficult to implement dedicated bonnet polishing machine tools,and their processing range is limited.This research combines bonnet polishing technology with industrial robot-assisted processing technology to propose a robotic bonnet polishing control model for large-diameter axisymmetric aspherical optical components.Using the transformation relations of the spatial coordinate system,the transformation relations of the workpiece coordinate system,local coordinate system of the polishing point,and tool coordinate system of the bonnet sphere center are established to obtain the bonnet precession polishing motion model.The polishing trajectory of large-diameter axisymmetric aspherical components and the variation in the linkage angle difference were simulated by adding an efficiency-optimal control strategy to the motion model.The robot motion was simulated in Robostudio to verify the correctness of the precession motion model and control algorithm.Lastly,the robotic bonnet polishing system was successfully applied to the polishing process of the optical components.展开更多
The formation and growth of Li-dendrites caused by inhomogeneous Li deposition severely hinder the commercial applications of Li metal batteries due to the consequence of short-circuiting.Herein,we propose a Janus bil...The formation and growth of Li-dendrites caused by inhomogeneous Li deposition severely hinder the commercial applications of Li metal batteries due to the consequence of short-circuiting.Herein,we propose a Janus bilayer composed of black phosphorus(BP)and graphene oxide(GO)as an artificial interface with chemical/mechanical stability and well-regulated Li-ion flux distribution for Li metal anode protection.Owing to the synergy between the fast Li-ion transport of BP in the inner layer and the high mechanical and chemical stability of GO in the outer layer,the GO/BP with good electrolyte wettability acts as a Li-ion regulator that can induce homogeneous growth of Li to suppress the Li dendrites growth.Accordingly,long-term stability(500 h at 1 mA cm^(-2))with a low overpotential of 30 mV is achieved in the symmetric cell with GO/BP-Li anode.Furthermore,the Li–S cell with GO/BP-Li exhibits enhanced cycling performance with a high capacity retention rate of 76.2%over 500 cycles at 1 C.展开更多
All-solid-state Z-scheme photocatalysts for overall water splitting to evolve H_(2) is a promising strategy for efficient conversion of solar energy.However,most of these strategies require redox mediators.Herein,a di...All-solid-state Z-scheme photocatalysts for overall water splitting to evolve H_(2) is a promising strategy for efficient conversion of solar energy.However,most of these strategies require redox mediators.Herein,a direct Z-scheme photoelectrocatalytic electrode based on a WO_(3-x)nanowire-bridged TiO_(2)nanorod array heterojunction is constructed for overall water splitting,producing H_(2).The as-prepared WO_(3-x)/TiO_(2)nanorod array heterojunction shows photoelectrochemical(PEC)overall water splitting activity evolving both H_(2) and O_(2)under UV-vis light irradiation.An optimum PEC activity was achieved over a 1.67-WO_(3-x)/TiO_(2)photoelectrode yielding maximum H_(2) and O_(2)evolution rates roughly 11 times higher than that of pure TiO_(2)nanorods without any sacrificial agent or redox mediator.The role of oxygen vacancy in WO_(3-x)in affecting the H_(2) production rate was also comprehensively studied.The superior PEC activity of the WO_(3-x)/TiO_(2)electrode for overall water splitting can be ascribed to an efficient Z-scheme charge transfer pathway between the WO_(3-x)nanowires and TiO_(2)nanorods,the presence of oxygen vacancies in WO_(3-x),and a bias potential applied on the photoelectrode,resulting in effective spatial charge separation.This study provides a novel strategy for developing highly efficient PECs for overall water splitting.展开更多
基金supported by National Natural Science Foundation of China(12071391,12231016)the Guangdong Basic and Applied Basic Research Foundation(2022A1515010860)。
文摘This paper is devoted to understanding the stability of perturbations around the hydrostatic equilibrium of the Boussinesq system in order to gain insight into certain atmospheric and oceanographic phenomena.The Boussinesq system focused on here is anisotropic,and involves only horizontal dissipation and thermal damping.In the 2D case R^(2),due to the lack of vertical dissipation,the stability and large-time behavior problems have remained open in a Sobolev setting.For the spatial domain T×R,this paper solves the stability problem and gives the precise large-time behavior of the perturbation.By decomposing the velocity u and temperatureθinto the horizontal average(ū,θ)and the corresponding oscillation(ū,θ),we can derive the global stability in H~2 and the exponential decay of(ū,θ)to zero in H^(1).Moreover,we also obtain that(ū_(2),θ)decays exponentially to zero in H^(1),and thatū_(1)decays exponentially toū_(1)(∞)in H^(1)as well;this reflects a strongly stratified phenomenon of buoyancy-driven fluids.In addition,we establish the global stability in H^(3)for the 3D case R^(3).
基金Ministry of Higher Education,Malaysia,Grant/Award Number:FRGS/1/2020/TK0/XMU/02/1Guangdong Basic and Applied Basic Research Foundation,Grant/Award Number:2021A1515111019+1 种基金Hengyuan International Sdn.Bhd.,Grant/Award Number:EENG/0003Xiamen University Malaysia,Grant/Award Numbers:IENG/0038,ICOE/0001,XMUMRF/2019-C3/IENG/0013,XMUMRF/2021-C8/IENG/0041。
文摘Green energy generation is an indispensable task to concurrently resolve fossil fuel depletion and environmental issues to align with the global goals of achieving carbon neutrality.Photocatalysis,a process that transforms solar energy into clean fuels through a photocatalyst,represents a felicitous direction toward sustainability.Eco-rich metal-free graphitic carbon nitride(g-C_(3)N_(4))is profiled as an attractive photocatalyst due to its fascinating properties,including excellent chemical and thermal stability,moderate band gap,visible light-active nature,and ease of fabrication.Nonetheless,the shortcomings of g-C_(3)N_(4)include fast charge recombination and limited surface-active sites,which adversely affect photocatalytic reactions.Among the modification strategies,point-to-face contact engineering of 2D g-C_(3)N_(4)with 0D nanomaterials represents an innovative and promising synergy owing to several intriguing attributes such as the high specific surface area,short effective charge-transfer pathways,and quantum confinement effects.This review introduces recent advances achieved in experimental and computational studies on the interfacial design of 0D nanostructures on 2D g-C_(3)N_(4)in the construction of point-to-face heterojunction interfaces.Notably,0D materials such as metals,metal oxides,metal sulfides,metal selenides,metal phosphides,and nonmetals on g-C_(3)N_(4)with different charge-transfer mechanisms are systematically discussed along with controllable synthesis strategies.The applications of 0D/2D g-C_(3)N_(4)-based photocatalysts are focused on solar-to-energy conversion via the hydrogen evolution reaction,the CO_(2)reduction reaction,and the N2 reduction reaction to evaluate the photocatalyst activity and elucidate reaction pathways.Finally,future perspectives for developing high-efficiency 0D/2D photocatalysts are proposed to explore potential emerging carbon nitride allotropes,large-scale production,machine learning integration,and multidisciplinary advances for technological breakthroughs.
基金supported by the National Natural Science Foundation of China(Nos.12175190 and U2241284)the National Key R&D Program of China(Nos.SQ2022YFB190165)+1 种基金the Natural Science Foundation of Fujian Province,China(No.2022J02006)the Special Funds for Central Government Guiding Shenzhen Development in Science and Technology,China(No.2021Szvup066).
文摘Betavoltaic cells(BCs)are promising self-generating power cells with long life and high power density.However,the low energy conversion efficiency(ECE)has limitations in practical engineering applications.Widebandgap semiconductors(WBGSs)with three-dimensional(3-D)nanostructures are ideal candidates for increasing the ECE of BCs.This paper proposes hydrothermally grown ZnO nanorod arrays(ZNRAs)for ^(63)Ni-powered BCs.A quantitative model was established for simulation using the parameter values of the dark characteristics,which were obtained from the experimental measurements for a simulated BC based on a Ni-incorporated ZNRAs structure.Monte Carlo(MC)modeling and simulation were conducted to obtain the values of the β energy deposited in ZNRAs with different nanorod spacings and heights.Through the simulation and optimization of the 3-D ZNRAs and 2-D ZnO bulk structures,the performance of the ^(63)Ni-powered BCs based on both structures was evaluated using a quantitative model.The BCs based on the 3-D ZNRAs structure and 2-D ZnO bulk structure achieved a maximum ECE of 10.1%and 4.69%,respectively,which indicates the significant superiority of 3-D nanostructured WBGSs in increasing the ECE of BCs.
基金financially supported by the National Natural Science Foundation of China (21771154, 31371005)the Shenzhen Fundamental Research Programs (JCYJ20190809161013453)+1 种基金the Natural Science Foundation of Fujian Province of China (Nos. 2018J01019, 2018J05025)the Fundamental Research Funds for the Central Universities (20720180019, 20720180016)。
文摘The generation of green hydrogen(H_2) energy is of great significance to solve worldwide energy and environmental issues. Reduced Ti based photocatalyst has recently attracted intensive attention due to its excellent photocatalytic activity, while the synthesis of reduced Ti based photocatalysts with high stability is still a great challenge. Here, we report a facile method for synthesis of reduced Ti metal organic frameworks(small amounts of Pt incorporated) encapsulated BP(BP/R-Ti-MOFs/Pt) hybrid nanomaterial with enhanced photocatalytic activity. The strong interaction between Ti and P reduces the valence state of the binding Ti^(4+)on the BP surface, forming abundant reduced Ti^(4+)within R-Ti-MOFs/BP. Such reduced Ti^(4+)render R-Ti-MOFs/BP efficient charge transfer and excellent light absorption capability, thus promote the photocatalytic H_2 production efficiency. Furthermore, the Ti-P interaction stabilizes both reduced Ti^(4+)and BP during the photocatalytic reaction, which greatly enhanced the stability of the obtained BP/R-TiMOFs/Pt photocatalyst.
基金partly supported by National Natural Science Foundation of China (No. 11975061)the Technology Innovation and Application Development Project of Chongqing (No. cstc2019jscx-msxmX0041)+1 种基金the Construction Committee Project of Chongqing (No. 2018-1-3-6)the Fundamental Research Funds for the Central Universities (No. 2019CDQYDQ034)。
文摘Efficient nitrogen fixation through a reactive plasma process attracts intense interest due to the environmental issues induced by the conventional Haber–Bosch method. In this work, we present a direct and simple fixation routine without any catalysts for nitrogen in open air using an atmospheric-pressure pin-to-solution plasma electrolytic system. Nitrate, nitrite, and ammonia as the nitrogen-derived chemicals in solution were analyzed as indicators under various discharge conditions to estimate the energy efficiency of this process. The results show that the nitrogen fixation process was much more efficient by the pin-positive discharge compared to the negative one. N chemicals preferred to be formed when the solution was of negative polarity. It was also found that, with the help of solution circulation, the energy efficiency was enhanced compared to that of static liquid. However, an inverse trend was observed with the increase of the discharge current. Further study by optical emission spectroscopy indicates the important roles of active N2* and water vapour and their derived species near the plasma–water interface in the fixation process.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51931006 and 51871188)the National Key R&D Program of China(No.2016YFA0202602)+4 种基金the Science and Technology Plan-ning Projects of Fujian Province of China(Grant No.2020H0005)the Natural Science Foundation of Fujian Province of China(No.2020J05014)Guangdong Basic and Applied Basic Research Foundation(Nos.2021A1515010139 and 2019A1515011070)the Fundamental Research Funds for the Central Universities of China(Xiamen University:Nos.20720200068,20720190013,and 20720200080)the“Double-First Class”Foundation of Mate-rials Intelligent Manufacturing Discipline of Xiamen University。
文摘There are plenty of issues need to be solved before the practi-cal application of Li-and Mn-rich cathodes,including the detrimental voltage decay and mediocre rate capability,etc.Element doping can e ectively solve the above problems,but cause the loss of capacity.The introduction of appropriate defects can compensate the capacity loss;however,it will lead to structural mismatch and stress accumulation.Herein,a three-in-one method that combines cation–polyanion co-doping,defect construction,and stress engineering is pro-posed.The co-doped Na^(+)/SO_(4)^(2-)can stabilize the layer framework and enhance the capacity and voltage stability.The induced defects would activate more reac-tion sites and promote the electrochemical performance.Meanwhile,the unique alternately distributed defect bands and crystal bands structure can alleviate the stress accumulation caused by changes of cell parameters upon cycling.Consequently,the modified sample retains a capacity of 273 mAh g^(-1)with a high-capacity retention of 94.1%after 100 cycles at 0.2 C,and 152 mAh g^(-1)after 1000 cycles at 2 C,the corresponding voltage attenuation is less than 0.907 mV per cycle.
基金financially supported by the National Natural Science Foundation of China(31372188,31471986)the Science and Technology Innovation Commission of Shenzhen Municipality(CXZZ20120614164555920)
文摘The Wnt/β-catenin signaling pathway plays a crucial role in the embryonic development of metazoans. Although the pathway has been studied extensively in many model animals, its function in amphioxus, the most primitive chordate, remains largely uncharacterized. To obtain basic data for functional analysis, we identified and isolated seven genes (Lrp5/6, Dvl, APC, Ckla, CklS, Gsk3β, and Gro) of the Wnt/β-catenin signaling pathway from the amphioxus (Branchiostoma floridae) genome. Phylogenetic analysis revealed that amphioxus had fewer members of each gene family than that found in vertebrates. Whole-mount in situ hybridization showed that the genes were maternally expressed and broadly distributed throughout the whole embryo at the cleavage and blastula stages. Among them, Dvl was expressed asymmetrically towards the animal pole, while the others were evenly distributed in all blastomeres. At the mid-gastrula stage, the genes were specifically expressed in the primitive endomesoderm, but displayed different patterns. When the embryo developed into the neurula stage, the gene expressions were mainly detected in either paraxial somites or the tail bud. With the development of the embryo, the expression levels further decreased gradually and remained only in some pharyngeal regions or the tail bud at the larva stage. Our results suggest that the Wnt/β-catenin pathway might be involved in amphioxus somite formation and posterior growth, but not in endomesoderm specification.
基金the Basic Research Program of Science and Technology of Shenzhen, China (No. JCYJ20190809162617137)National Natural Science Foundation of China (No. 52077185) for partial financial support+1 种基金the Australian Research Council (ARC)QUT Center for Materials Science for partial support
文摘Dual argon plasmas ignited by one direct current power source are used to treat an aqueous solution of hydrogen tetrachloroaurate-(Ⅲ)trihydrate(HAuCl_(4)·3H_(2)O)which is contained in an H-type electrochemical cell.The solution contained in one cell acts as a cathode,and in the other as an anode.Experiments are carried out to directly visualize the formation process of gold nanoparticles(Au NPs)in separated cells of the H-type electrochemical reactor.The results and analyzes suggest that hydrogen peroxide and hydrated electrons generated from the plasma-liquid interactions play the roles of reductants in the solutions,respectively.Hydrogen peroxide can be generated in the case of the liquid being a cathode or an anode,while most of hydrated electrons are formed in the case of the liquid being an anode.Therefore,the reduction of the AuCl_(4)−ions is mostly attributed to the hydrogen peroxide as the liquid acts as a cathode,while to the hydrogen peroxide and hydrated electrons as the liquid acts as an anode.Moreover,the p H value of the solution can be used to tune the formation processes and final form of the Au NPs due to its mediation of reductants.
基金Supported by the National Natural Science Foundation of China(No.82171064,No.81870671,No.82274162)Natural Science Foundation of Fujian Province(No.2020J01013)Guangdong Basic and Applied Basic Research Foundation(No.2022A1515012514,No.2021A1515011391)。
文摘AIM:To study the effect of palmitoylethanolamide(PEA)on apoptosis of retinal pigment epithelial(RPE)cells induced by all-trans retinal(at RAL)and to explore the possible molecular mechanism.METHODS:Cell Titer 96■Aqueous One Solution Cell Proliferation Assay(MTS)was used to detect the effect of PEA on human-derived retinal epithelial cells(ARPE-19)viability induced by at RAL.A Leica DMi8 inverted microscope was used to observe cell morphology.Reactive oxygen species(ROS)production was evaluated with 2’,7’-dichlorodihydrofluorescein diacetate(H2DCFDA)staining and fluorescence microscopy.Expression of c-Jun N-terminal kinase(JNK),phosphorylated JNK(p-JNK),c-Jun,phosphorylated c-Jun(p-c-Jun),Bak,cleaved caspase-3,C/EBP homologous protein(CHOP),and binding(Bip)protein levels were tested by Western blot.Abca4-/-Rdh8-/-mice,mouse models of at RAL clearance defects which displays some symbolic characteristics of dry age-related macular degeneration(AMD)and Stargardt disease(STGD1).In the animal models,PEA was injected intraperitoneally.The full-field electroretinogram was used to detect visual function under scotopic conditions traced from mice.Optical coherence tomography showed reconstitution or thickening of the retinal pigment epithelium layer.Effect of PEA on fundus injury induced by light in Abca4-/-Rdh8-/-mice was observed by fundus photography.RESULTS:PEA ameliorated ARPE-19 cells apoptosis and inhibited ROS(including mitochondrial ROS)production induced by at RAL.PEA improved the retinal functional,prohibited both RPE and photoreceptor from death,ameliorates light-induced fundus impairment in Abca4-/-Rdh8-/-mice.In vitro and in vivo,PEA inhibited JNK,p-JNK,c-Jun,p-c-Jun,Bak,cleaved caspase-3,CHOP,and Bip protein levels induced by all-trans retinal in ARPE-19 cells.CONCLUSION:PEA has effect on treating RPE cells apoptosis in retinopathy caused by at RAL accumulation.PEA is a potential treatment strategy for dry AMD and STGD1.The molecular mechanism is affecting the ROS-JNKCHOP signaling pathway partly.
基金Supported by National Key R&D Program of China(Grant Nos.2020YFB1709901 and 2020YFB1709904)National Natural Science Foundation of China(Grant Nos.51975495 and 51905460)+1 种基金Guangdong Provincial Basic and Applied Basic Research Foundation(Grant No.2021A1515012286)Guiding Funds of Central Government for Supporting the Development of the Local Science and Technology(Grant No.2022L3049).
文摘Fast and accurate measurement of the volume of earthmoving materials is of great signifcance for the real-time evaluation of loader operation efciency and the realization of autonomous operation. Existing methods for volume measurement, such as total station-based methods, cannot measure the volume in real time, while the bucket-based method also has the disadvantage of poor universality. In this study, a fast estimation method for a loader’s shovel load volume by 3D reconstruction of material piles is proposed. First, a dense stereo matching method (QORB–MAPM) was proposed by integrating the improved quadtree ORB algorithm (QORB) and the maximum a posteriori probability model (MAPM), which achieves fast matching of feature points and dense 3D reconstruction of material piles. Second, the 3D point cloud model of the material piles before and after shoveling was registered and segmented to obtain the 3D point cloud model of the shoveling area, and the Alpha-shape algorithm of Delaunay triangulation was used to estimate the volume of the 3D point cloud model. Finally, a shovel loading volume measurement experiment was conducted under loose-soil working conditions. The results show that the shovel loading volume estimation method (QORB–MAPM VE) proposed in this study has higher estimation accuracy and less calculation time in volume estimation and bucket fll factor estimation, and it has signifcant theoretical research and engineering application value.
基金the NNSF of China(12071391)the Guangdong Basic and Applied Basic Research Foundation (2022A1515010069)。
文摘We study a spatiotemporal EIT problem with a dynamical boundary condition for the fractional Dirichlet-to-Neumann operator with a critical exponent.There are three major ingredients in this paper.The first is the finite time blowup and the decay estimate of the global solution with a lower-energy initial value.The second ingredient is the L^(q)(2 ≤q <∞) estimate of the global solution applying the Moser iteration,which allows us to show that any global solution is a classical solution.The third,which is the main ingredient of this paper,explores the long time asymptotic behavior of global solutions close to the stationary solution and the bubbling phenomenons by means of a concentration compactness principle.
基金Project supported by the National Natural Science Foundation of China (Grant No. 12074322)Shenzhen Science and Technology Plan Project (Grant No. JCYJ20180504170208402)+1 种基金Science and Technology Project of Xiamen City (Grant No. 3502Z20183012)Science and Technology Planning Project of Guangdong Province,China (Grant No. 2018B030331001)
文摘This work presents a strategy for the mesoscopic engineering of hierarchically structured sodium alginate(SA)aerogels to enhance the macroscopic performance.The strategy was implemented by meso-functionalizing and reorganizing SA aerogels via controlled heterogeneous nucleation,in which microcrystalline cellulose-manganese dioxide(MCC-MnO_(2))nano-crystallites worked as template.Due to the short rod-like structure and abundant hydroxyl groups of MCC-MnO_(2),the organized mesostructure of SA aerogels was reconstructed during the assembly of SA molecule chains,which gave rise to a significant enhancement in macroscopic performance of SA areogels.For instance,the functionalized and reconstructed MCC-MnO_(2)/SA aerogels acquired a more than 70%increase in mechanical strength with an excellent deformation recovery.Furthermore,an almost double enhancement of removal capacity for metal ions(i.e.,Cu^(2+)and Pb^(2+))and organic dyes(i.e.,congo red and methylene blue)was obtained for MnO_(2)/SA aerogels,with an 87%repossession of the pollutants removal performance after 5 operation cycles.
基金Funded by the National Natural Science Foundation of China(No.51675453)Technology Projects of Shenzhen(No.JCYJ 20160517103720819)
文摘We presented a numerical examination of the effect of microtexturing negative rings' structure on the tribological performance of parallel bearing couples' cell. Three mcirotexturing rings, which are circle, square and ellipse, were chosen and the analysis model were established. We used the Reynolds equation coupled with finite difference method and successive over relaxation Gauss-Seidel iterative method to solve the Newtonian flow's hydrodynamics within a bearing couple. The effect of texture density and radius ratio(thickness) of the microtexturing rings were investigated on the tribological performance under the similar operating conditions. The numerical simulation reveals that: 1) The microtexturing rings' structure can homogenize the local pressure much uniformly within the bearing cell. 2) The tribological performance is determined mainly by the microtexturing rings' geometry and texture density, and the thickness of the rings' structure can help to change the quantitative values. 3) The square and circle rings' s microtexturing surface can slightly improve the frictional performance with the bearing cells' gap, while the ellipse ring's surface may decrease the frictional performance. 4) The ellipse rings' microtexturing surface can achieve the minimum spacing gap but the maximum friction coefficient of the bearing couple, and then the circle and square rings' structure take the second and third place, respectively.
基金National Natural Science Foundation of China(No.52077185)the Basic Research Program of Science and Technology of Shenzhen,China(No.JCYJ20190809162617137)for partial financial support+6 种基金the financial supports from the Basic Ability Promotion Project for Young and Middle-Aged Teachers in Universities of Guangxi(No.2018KY0083)Doctoral Scientific Research Fund of Guangxi Normal University(No.2017BQ019)the financial supports from National Natural Science Foundation of China(No.11975061)the Technology Innovation and Application Development Project of Chongqing(No.cstc2019jscxmsxm X0041)the Construction Committee Project of Chongqing(No.2018-1-3-6)the Fundamental Research Funds for the Central Universities(No.2019CDQYDQ034)the Australian Research Council(ARC)for partial support。
文摘The quantification of hydrogen peroxide(H_(2)O_(2))generated in the plasma-liquid interactions is of great importance,since the H_(2)O_(2)species is vital for the applications of the plasma-liquid system.Herein,we report on in situ quantification of the aqueous H_(2)O_(2)(H_(2)O_(2)aq)using a colorimetric method for the DC plasma-liquid systems with liquid as either a cathode or an anode.The results show that the H_(2)O_(2)aqyield is 8-12 times larger when the liquid acts as a cathode than when the liquid acts as an anode.The conversion rate of the gaseous OH radicals to H_(2)O_(2)aqis 4-6 times greater in the former case.However,the concentrations of dissolved OH radicals for both liquid as cathode and anode are of the same order of tens of n M.
基金support by the NSFC(12071391,12231016)the Guangdong Basic and Applied Basic Research Foundation(2022A1515010860)support by the China Postdoctoral Science Foundation(2023M742401)。
文摘In this paper,we establish some regularity conditions on the density and velocity fields to guarantee the energy conservation of the weak solutions for the three-dimensional compressible nematic liquid crystal flow in the periodic domain.
基金supported by the National Natural Science Foundation of China (Grant Nos.62022069,62235014,and 62305275)the Shenzhen Science and Technology Projects (Grant No.JCYJ20210324115813037)the China National Postdoctoral Program for Innovative Talents (Grant No.BX20230199).
文摘Although visible femtosecond lasers based on nonlinear frequency conversion of Ti:sapphire femtosecond oscillators or near-infrared ultrafast lasers have been well developed,limitations in terms of footprint,cost,and efficiency have called for alternative laser solutions.The fiber femtosecond mode-locked oscillator as an ideal solution has achieved great success in the 0.9 to 3.5μm infrared wavelengths,but remains an outstanding challenge in the visible spectrum(390 to 780 nm).Here,we tackle this challenge by introducing a visible-wavelength mode-locked femtosecond fiber oscillator along with an amplifier.This fiber femtosecond oscillator emits red light at 635 nm,employs a figure-nine cavity configuration,applies a double-clad Pr3þ-doped fluoride fiber as the visible gain medium,incorporates a visible-wavelength phase-biased nonlinear amplifying loop mirror(PB-NALM)for mode locking,and utilizes a pair of customized high-efficiency and high-groove-density diffraction gratings for dispersion management.Visible self-starting mode locking established by the PB-NALM directly yields red laser pulses with a minimum pulse duration of 196 fs and a repetition rate of 53.957 MHz from the oscillator.Precise control of the grating pair spacing can switch the pulse state from a dissipative soliton or a stretched-pulse soliton to a conventional soliton.In addition,a chirped-pulse amplification system built alongside the oscillator immensely boosts the laser performance,resulting in an average output power over 1W,a pulse energy of 19.55 nJ,and a dechirped pulse duration of 230 fs.Our result represents a concrete step toward high-power femtosecond fiber lasers covering the visible spectral region and could have important applications in industrial processing,biomedicine,and scientific research.
基金financial support from the National Natural Science Foundation of China(Grant Nos.51871188 and 51931006)the Fundamental Research Funds for the Central Universities of China(Xiamen University:Nos.20720200068,20720190007 and 20720220074)+2 种基金Guangdong Basic and Applied Basic Research Foundation(No.2021A1515010139)Science and Technology Projects of Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province(HRTP-[2022]-22)the“Double-First Class”Foundation of Materials Intelligent Manufacturing Discipline of Xiamen University。
文摘The commercial viability of lithium-sulfur batteries is still challenged by the notorious lithium polysulfides(Li PSs)shuttle effect on the sulfur cathode and uncontrollable Li dendrites growth on the Li anode.Herein,a bi-service host with Co-Fe binary-metal selenide quantum dots embedded in three-dimensional inverse opal structured nitrogen-doped carbon skeleton(3DIO FCSe-QDs@NC)is elaborately designed for both sulfur cathode and Li metal anode.The highly dispersed FCSe-QDs with superb adsorptive-catalytic properties can effectively immobilize the soluble Li PSs and improve diffusion-conversion kinetics to mitigate the polysulfide-shutting behaviors.Simultaneously,the 3D-ordered porous networks integrated with abundant lithophilic sites can accomplish uniform Li deposition and homogeneous Li-ion flux for suppressing the growth of dendrites.Taking advantage of these merits,the assembled Li-S full batteries with 3DIO FCSe-QDs@NC host exhibit excellent rate performance and stable cycling ability(a low decay rate of 0.014%over 2,000 cycles at 2C).Remarkably,a promising areal capacity of 8.41 mAh cm^(-2)can be achieved at the sulfur loading up to 8.50 mg cm^(-2)with an ultra-low electrolyte/sulfur ratio of 4.1μL mg^(-1).This work paves the bi-serve host design from systematic experimental and theoretical analysis,which provides a viable avenue to solve the challenges of both sulfur and Li electrodes for practical Li-S full batteries.
基金Science and Technology Projects of Shenzhen(Grant No.JCYJ20180306172924636).
文摘With the increasing demand for high-precision optical components,bonnet polishing technology is increasingly being used in the polishing process of optical components owing to its high removal efficiency and high surface accuracy.However,it is expensive and difficult to implement dedicated bonnet polishing machine tools,and their processing range is limited.This research combines bonnet polishing technology with industrial robot-assisted processing technology to propose a robotic bonnet polishing control model for large-diameter axisymmetric aspherical optical components.Using the transformation relations of the spatial coordinate system,the transformation relations of the workpiece coordinate system,local coordinate system of the polishing point,and tool coordinate system of the bonnet sphere center are established to obtain the bonnet precession polishing motion model.The polishing trajectory of large-diameter axisymmetric aspherical components and the variation in the linkage angle difference were simulated by adding an efficiency-optimal control strategy to the motion model.The robot motion was simulated in Robostudio to verify the correctness of the precession motion model and control algorithm.Lastly,the robotic bonnet polishing system was successfully applied to the polishing process of the optical components.
基金financially supported by the National Natural Science Foundation of China(21771154)the Shenzhen Fundamental Research Programs(JCYJ20190809161013453)+1 种基金the Fundamental Research Funds for the Central Universities(20720220031)the 111 Project(B16029)。
文摘The formation and growth of Li-dendrites caused by inhomogeneous Li deposition severely hinder the commercial applications of Li metal batteries due to the consequence of short-circuiting.Herein,we propose a Janus bilayer composed of black phosphorus(BP)and graphene oxide(GO)as an artificial interface with chemical/mechanical stability and well-regulated Li-ion flux distribution for Li metal anode protection.Owing to the synergy between the fast Li-ion transport of BP in the inner layer and the high mechanical and chemical stability of GO in the outer layer,the GO/BP with good electrolyte wettability acts as a Li-ion regulator that can induce homogeneous growth of Li to suppress the Li dendrites growth.Accordingly,long-term stability(500 h at 1 mA cm^(-2))with a low overpotential of 30 mV is achieved in the symmetric cell with GO/BP-Li anode.Furthermore,the Li–S cell with GO/BP-Li exhibits enhanced cycling performance with a high capacity retention rate of 76.2%over 500 cycles at 1 C.
基金supported by the National Key Research and Development Program of China(2019YFA0705400 and 2019YFD0901100)the National Natural Science Foundation of China(21991151,21925404,and 21775127)+1 种基金the“111”Project(B17027)Guangdong Basic and Applied Basic Research Foundation(2020A1515010510)。
文摘All-solid-state Z-scheme photocatalysts for overall water splitting to evolve H_(2) is a promising strategy for efficient conversion of solar energy.However,most of these strategies require redox mediators.Herein,a direct Z-scheme photoelectrocatalytic electrode based on a WO_(3-x)nanowire-bridged TiO_(2)nanorod array heterojunction is constructed for overall water splitting,producing H_(2).The as-prepared WO_(3-x)/TiO_(2)nanorod array heterojunction shows photoelectrochemical(PEC)overall water splitting activity evolving both H_(2) and O_(2)under UV-vis light irradiation.An optimum PEC activity was achieved over a 1.67-WO_(3-x)/TiO_(2)photoelectrode yielding maximum H_(2) and O_(2)evolution rates roughly 11 times higher than that of pure TiO_(2)nanorods without any sacrificial agent or redox mediator.The role of oxygen vacancy in WO_(3-x)in affecting the H_(2) production rate was also comprehensively studied.The superior PEC activity of the WO_(3-x)/TiO_(2)electrode for overall water splitting can be ascribed to an efficient Z-scheme charge transfer pathway between the WO_(3-x)nanowires and TiO_(2)nanorods,the presence of oxygen vacancies in WO_(3-x),and a bias potential applied on the photoelectrode,resulting in effective spatial charge separation.This study provides a novel strategy for developing highly efficient PECs for overall water splitting.