Optical fibers are typically used in telecommunications services for data transmission,where the use of fiber tags is essential to distinguish between the different transmission fibers or channels and thus ensure the ...Optical fibers are typically used in telecommunications services for data transmission,where the use of fiber tags is essential to distinguish between the different transmission fibers or channels and thus ensure the working functionality of the communication system.Traditional physical entity marking methods for fiber labeling are bulky,easily confused,and,most importantly,the label information can be accessed easily by all potential users.This work proposes an encrypted optical fiber tag based on an encoded fiber Bragg grating(FBG)array that is fabricated using a point-by-point femtosecond laser pulse chain inscription method.Gratings with different resonant wavelengths and reflectivities are realized by adjusting the grating period and the refractive index modulations.It is demonstrated that a binary data sequence carried by a fiber tag can be inscribed into the fiber core in the form of an FBG array,and the tag data can be encrypted through appropriate design of the spatial distributions of the FBGs with various reflection wavelengths and reflectivities.The proposed fiber tag technology can be used for applications in port identification,encrypted data storage,and transmission in fiber networks.展开更多
Benefiting from the great advances of the femtosecond laser two-photon polymerization(TPP)technology,customized microcantilever probes can be accurately 3-dimensional(3D)manufactured at the nanoscale size and thus hav...Benefiting from the great advances of the femtosecond laser two-photon polymerization(TPP)technology,customized microcantilever probes can be accurately 3-dimensional(3D)manufactured at the nanoscale size and thus have exhibited considerable potentials in the fields of microforce,micro-vibration,and microforce sensors.In this work,a controllable microstructured cantilever probe on an optical fiber tip for microforce detection is demonstrated both theoretically and experimentally.The static performances of the probe are firstly investigated based on the finite element method(FEM),which provides the basis for the structural design.The proposed cantilever probe is then 3D printed by means of the TPP technology.The experimental results show that the elastic constant k of the proposed cantilever probe can be actively tuned from 2.46N/m to 62.35N/m.The force sensitivity is 2.5nm/μN,the Q-factor is 368.93,and the detection limit is 57.43nN.Moreover,the mechanical properties of the cantilever probe can be flexibly adjusted by the geometric configuration of the cantilever.Thus,it has an enormous potential for matching the mechanical properties of biological samples in the direct contact mode.展开更多
基金supported by the National Natural Science Foundation of China(62122057,62075136,62105217,62205221,62205222)the Basic and Applied Basic Research Foundation of Guangdong Province(2022B1515120061)Shenzhen Science and Technology Program(Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing ZDSYS20220606100405013,RCYX20200714114524139,JCYJ20200109114001806)。
文摘Optical fibers are typically used in telecommunications services for data transmission,where the use of fiber tags is essential to distinguish between the different transmission fibers or channels and thus ensure the working functionality of the communication system.Traditional physical entity marking methods for fiber labeling are bulky,easily confused,and,most importantly,the label information can be accessed easily by all potential users.This work proposes an encrypted optical fiber tag based on an encoded fiber Bragg grating(FBG)array that is fabricated using a point-by-point femtosecond laser pulse chain inscription method.Gratings with different resonant wavelengths and reflectivities are realized by adjusting the grating period and the refractive index modulations.It is demonstrated that a binary data sequence carried by a fiber tag can be inscribed into the fiber core in the form of an FBG array,and the tag data can be encrypted through appropriate design of the spatial distributions of the FBGs with various reflection wavelengths and reflectivities.The proposed fiber tag technology can be used for applications in port identification,encrypted data storage,and transmission in fiber networks.
基金supported by the Shenzhen Science and Technology Program (Grant No.RCYX20200714114524139)Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing (Grant No.ZDSYS20220606100405013)+2 种基金Natural Science Foundation of GuangdongProvince (Grant Nos.2022B1515120061 and 2022A1515110971)National Natural Science Foundation of China (Grant Nos.62122057,62075136,62105217,and 62305223)China Postdoctoral Science Foundation (Grant No.2022M722173).
文摘Benefiting from the great advances of the femtosecond laser two-photon polymerization(TPP)technology,customized microcantilever probes can be accurately 3-dimensional(3D)manufactured at the nanoscale size and thus have exhibited considerable potentials in the fields of microforce,micro-vibration,and microforce sensors.In this work,a controllable microstructured cantilever probe on an optical fiber tip for microforce detection is demonstrated both theoretically and experimentally.The static performances of the probe are firstly investigated based on the finite element method(FEM),which provides the basis for the structural design.The proposed cantilever probe is then 3D printed by means of the TPP technology.The experimental results show that the elastic constant k of the proposed cantilever probe can be actively tuned from 2.46N/m to 62.35N/m.The force sensitivity is 2.5nm/μN,the Q-factor is 368.93,and the detection limit is 57.43nN.Moreover,the mechanical properties of the cantilever probe can be flexibly adjusted by the geometric configuration of the cantilever.Thus,it has an enormous potential for matching the mechanical properties of biological samples in the direct contact mode.