期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Tailoring the multiscale mechanics of tunable decellularized extracellular matrix (dECM) for wound healing through immunomodulation 被引量:2
1
作者 Pu Luo Ruoxuan Huang +14 位作者 You Wu Xingchen Liu Zhengjie Shan Li Gong Shudan Deng Haiwen Liu Jinghan Fang Shiyu Wu Xiayi Wu Quan Liu Zetao Chen Kelvin W.K.Yeung Wei Qiao Shoucheng Chen Zhuofan Chen 《Bioactive Materials》 SCIE CSCD 2023年第10期95-111,共17页
With the discovery of the pivotal role of macrophages in tissue regeneration through shaping the tissue immune microenvironment, various immunomodulatory strategies have been proposed to modify traditional biomaterial... With the discovery of the pivotal role of macrophages in tissue regeneration through shaping the tissue immune microenvironment, various immunomodulatory strategies have been proposed to modify traditional biomaterials. Decellularized extracellular matrix (dECM) has been extensively used in the clinical treatment of tissue injury due to its favorable biocompatibility and similarity to the native tissue environment. However, most reported decellularization protocols may cause damage to the native structure of dECM, which undermines its inherent advantages and potential clinical applications. Here, we introduce a mechanically tunable dECM prepared by optimizing the freeze-thaw cycles. We demonstrated that the alteration in micromechanical properties of dECM resulting from the cyclic freeze-thaw process contributes to distinct macrophage-mediated host immune responses to the materials, which are recently recognized to play a pivotal role in determining the outcome of tissue regeneration. Our sequencing data further revealed that the immunomodulatory effect of dECM was induced via the mechnotrasduction pathways in macrophages. Next, we tested the dECM in a rat skin injury model and found an enhanced micromechanical property of dECM achieved with three freeze-thaw cycles significantly promoted the M2 polarization of macrophages, leading to superior wound healing. These findings suggest that the immunomodulatory property of dECM can be efficiently manipulated by tailoring its inherent micromechanical properties during the decellularization process. Therefore, our mechanics-immunomodulation-based strategy provides new insights into the development of advanced biomaterials for wound healing. 展开更多
关键词 Wound healing Decellularized extracellular matrix Freeze-thaw treatment Multiscale mechanics Macrophage polarization IMMUNOMODULATION MECHANOTRANSDUCTION
原文传递
L-arginine loading porous PEEK promotes percutaneous tissue repairthrough macrophage orchestration
2
作者 Tong Zhao Xingdan Liu +7 位作者 Zhuangzhuang Chu Jing Zhao Dongya Jiang Xiaohua Dong Ziyi Lu Kelvin WKYeung Xuanyong Liu Liping Ouyang 《Bioactive Materials》 SCIE CSCD 2024年第10期19-33,共15页
Infection and poor tissue repair are the key causes of percutaneous implantation failure. However, there is a lackof effective strategies to cope with due to its high requirements of sterilization, soft tissue healing... Infection and poor tissue repair are the key causes of percutaneous implantation failure. However, there is a lackof effective strategies to cope with due to its high requirements of sterilization, soft tissue healing, andosseointegration. In this work, L-arginine (L-Arg) was loaded onto a sulfonated polyetheretherketone (PEEK)surface to solve this issue. Under the infection condition, nitric oxide (NO) and reactive oxygen species (ROS) areproduced through catalyzing L-Arg by inducible nitric oxide synthase (iNOS) and thus play a role in bacteriasterilization. Under the tissue repair condition, L-Arg is catalyzed to ornithine by Arginase-1 (Arg-1), whichpromotes the proliferation and collagen secretion of L929 and rBMSCs. Notably, L-Arg loading samples couldpolarize macrophages to M1 and M2 in infection and tissue repair conditions, respectively. The results in vivoshow that the L-Arg loading samples could enhance infected soft tissue sealing and bone regeneration. Insummary, L-Arg loading sulfonated PEEK could polarize macrophage through metabolic reprogramming,providing multi-functions of antibacterial abilities, soft tissue repair, and bone regeneration, which gives a newidea to design percutaneous implantation materials. 展开更多
关键词 POLYETHERETHERKETONE Macrophage orchestration STERILIZATION Tissue repair
原文传递
Corrigendum to‘Fabrication of a bio-instructive scaffold conferred with a favorable microenvironment allowing for superior implant osseointegration and accelerated in situ vascularized bone regeneration via type H vessel formation’[Bioactive Materials,Volume 9(March 2022)Page 491-507]
3
作者 Yijun He Wenhao Wang +13 位作者 Shaozhang Lin Yixi Yang Lizhi Song Yihan Jing Lihao Chen Zaopeng He Wei Li Ao Xiong Kelvin W.K.Yeung Qi Zhao Yuan Jiang Zijie Li Guoxian Pei Zhi-Yong Zhang 《Bioactive Materials》 SCIE CSCD 2023年第2期164-164,共1页
The authors regret a mistake of funding numbers in the Acknowledgment Section failed to be corrected during proofreading.Below is the corrected funding statement in ACKNOWLEDGMENT SECTION:This work was supported by th... The authors regret a mistake of funding numbers in the Acknowledgment Section failed to be corrected during proofreading.Below is the corrected funding statement in ACKNOWLEDGMENT SECTION:This work was supported by the National Natural Science Foundation of China(NSFC)(Nos.82072415,81772354,81902189),Clinical Innovation Research Program of Guangzhou Regenerative Medicine and Health Guangdong Laboratory(2018GZR0201002),Science Technology Project of Guangzhou City(2019ZD15). 展开更多
关键词 NSFC instru STATEMENT
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部