期刊文献+
共找到69篇文章
< 1 2 4 >
每页显示 20 50 100
Boosting kinetic separation of ethylene and ethane on microporous materials via crystal size control
1
作者 Yixuan Ma Cong Yu +5 位作者 Lifeng Yang Rimin You Yawen Bo Qihan Gong Huabin Xing Xili Cui 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期85-91,共7页
The adsorptive separation of C_(2)H_(4)and C_(2)H_(6),as an alternative to distillation units consuming high energy,is a promising yet challenging research.The great similarity in the molecular size of C_(2)H_(4)and C... The adsorptive separation of C_(2)H_(4)and C_(2)H_(6),as an alternative to distillation units consuming high energy,is a promising yet challenging research.The great similarity in the molecular size of C_(2)H_(4)and C_(2)H_(6)brings challenges to the regulation of adsorbents to realize efficient dynamic separation.Herein,we reported the enhancement of the kinetic separation of C_(2)H_(4)/C_(2)H_(6)by controlling the crystal size of ZnAtzPO_(4)(Atz=3-amino-1,2,4-triazole)to amplify the diffusion difference of C_(2)H_(4)and C_(2)H_(6).Through adjusting the synthesis temperature,reactant concentration,and ligands/metal ions molar ratio,ZnAtzPO4 crystals with different sizes were obtained.Both single-component kinetic adsorption tests and binary-component dynamic breakthrough experiments confirmed the enhancement of the dynamic separation of C_(2)H_(4)/C_(2)H_(6)with the increase in the crystal size of ZnAtzPO_(4).The separation selectivity of C_(2)H_(4)/C_(2)H_(6)increased from 1.3 to 98.5 with the increase in the crystal size of ZnAtzPO_(4).This work demonstrated the role of morphology and size control of adsorbent crystals in the improvement of the C_(2)H_(4)/C_(2)H_(6)kinetic separation performance. 展开更多
关键词 ADSORPTION ADSORBENT ETHYLENE Binary mixture Crystal size control Kinetic separation
在线阅读 下载PDF
The fabrication of hydroxyapatite mineralized hydrogels for bone tissue engineering
2
作者 Xiu-Mei Zhang Jin-Qiao Jia +5 位作者 Yu Cao Yan Wei Yin-Chun Hu Xiao-Jie Lian Zi-Wei Liang Di Huang 《Biomedical Engineering Communications》 2023年第2期18-27,共10页
Bone is a complex but orderly mineralized tissue with hydroxyapatite(HA)as the inorganic phase and collagen as the organic phase.Inspired by natural bone tissues,HA-mineralized hydrogels have been widely designed and ... Bone is a complex but orderly mineralized tissue with hydroxyapatite(HA)as the inorganic phase and collagen as the organic phase.Inspired by natural bone tissues,HA-mineralized hydrogels have been widely designed and used in bone tissue engineering.HA is majorly utilized for the treatment of bone defects because of its excellent osteoconduction and bone inductivity.Hydrogel is a three-dimensional hydrophilic network structure with similar properties to the extracellular matrix(ECM).The combination of HA and hydrogels produces a new hybrid material that could effectively promote osteointegration and accelerate the healing of bone defects.In this review,the structure and growth of bone and the common strategies used to prepare HA were briefly introduced.Importantly,we discussed the fabrication of HA mineralized hydrogels from simple blending to in situ mineralization.We hope this review can provide a reference for the development of bone repair hydrogels. 展开更多
关键词 HYDROXYAPATITE HYDROGEL MINERALIZATION bone tissue engineering
在线阅读 下载PDF
Effect of GaInP and GaAsP inserted into waveguide/barrier interface on carrier leakage in InAlGaAs quantum well 808-nm laser diode
3
作者 FU Meng-jie DONG Hai-liang +3 位作者 JIA Zhi-gang JIA Wei LIANG Jian XU Bing-she 《中国光学(中英文)》 北大核心 2025年第1期186-197,共12页
There is nonradiative recombination in waveguide region owing to severe carrier leakage,which in turn reduces output power and wall-plug efficiency.In this paper,we designed a novel epitaxial structure,which suppresse... There is nonradiative recombination in waveguide region owing to severe carrier leakage,which in turn reduces output power and wall-plug efficiency.In this paper,we designed a novel epitaxial structure,which suppresses carrier leakage by inserting n-Ga_(0.55)In_(0.45)P and p-GaAs_(0.6)P_(0.4) between barriers and waveguide layers,respectively,to modulate the energy band structure and to increase the height of barrier.The results show that the leakage current density reduces by 87.71%,compared to traditional structure.The nonradiative recombination current density of novel structure reduces to 37.411 A/cm^(2),and the output power reaches 12.80 W with wall-plug efficiency of 78.24%at an injection current density 5 A/cm^(2) at room temperature.In addition,the temperature drift coefficient of center wavelength is 0.206 nm/℃at the temperature range from 5℃to 65℃,and the slope of fitted straight line of threshold current with temperature variation is 0.00113.The novel epitaxial structure provides a theoretical basis for achieving high-power laser diode. 展开更多
关键词 808-nm laser diode Ga_(0.55)In_(0.45)P and GaAs_(0.6)P_(0.4)insertion layers InAlGaAs quantum well carrier leakage
在线阅读 下载PDF
Interfacial electron rearrangement of 3D Fe_(3)O_(4)/h-YFeO_(3)composites for efficient electromagnetic wave absorption
4
作者 Yi Sui Yingde Zhang +4 位作者 Guang Liu Lei Ji Junyu Yue Chen Wu Mi Yan 《International Journal of Minerals,Metallurgy and Materials》 2025年第3期609-618,共10页
Interface modulation is an important pathway for highly efficient electromagnetic wave absorption.Herein,tailored interfaces between Fe_(3)O_(4)particles and the hexagonal-YFeO_(3)(h-YFeO_(3))framework were constructe... Interface modulation is an important pathway for highly efficient electromagnetic wave absorption.Herein,tailored interfaces between Fe_(3)O_(4)particles and the hexagonal-YFeO_(3)(h-YFeO_(3))framework were constructed via facile self-assembly.The resulting interfa-cial electron rearrangement at the heterojunction led to enhanced dielectric and magnetic loss synergy.Experimental results and density function theory(DFT)simulations demonstrate a transition in electrical properties from a half-metallic monophase to metallic Fe_(3)O_(4)/h-YFeO_(3)composites,emphasizing the advantages of the formed heterointerface.The transformation of electron behavior is also accompan-ied by a redistribution of electrons at the Fe_(3)O_(4)/h-YFeO_(3)heterojunction,leading to the accumulation of localized electrons around the Y-O-Fe band bridge,consequently enhancing the polarization.A minimum reflection loss of-34.0 dB can be achieved at 12.0 GHz and 2.0 mm thickness with an effective bandwidth of 3.3 GHz due to the abundant interfaces,enhanced polarization,and rational impedance.Thus,the synergistic effects endow the Fe_(3)O_(4)/h-YFeO_(3)composites with high performance and tunable functional properties for efficient electromagnetic absorption. 展开更多
关键词 SELF-ASSEMBLING HETEROJUNCTION electron rearrangement interface modulation electromagnetic wave absorption
在线阅读 下载PDF
Stability analysis of longwall top-coal caving face in extra-thick coal seams based on an innovative numerical hydraulic support model 被引量:2
5
作者 Jun Guo Wenbo Huang +7 位作者 Guorui Feng Jinwen Bai Lirong Li Zi Wang Luyang Yu Xiaoze Wen Jie Zhang Wenming Feng 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第4期491-505,共15页
The relationship between support and surrounding rock is of great significance to the control of surrounding rock in mining process.In view of the fact that most of the existing numerical simulation methods construct ... The relationship between support and surrounding rock is of great significance to the control of surrounding rock in mining process.In view of the fact that most of the existing numerical simulation methods construct virtual elements and stress servo control to approximately replace the hydraulic support problem,this paper establishes a new numerical model of hydraulic support with the same working characteristics as the actual hydraulic support by integrating numerical simulation software Rhino,Griddle and FLAC3D,which can realize the simulation of different working conditions.Based on this model,the influence mechanism of the supporting strength of hydraulic support on surrounding rock stress regulation and coal stability in front of the top coal caving face in extra thick coal seam were researched.Firstly,under different support intensity,the abutment pressure of the bearing coal and the coal in front of it presents the “three-stage”evolution characteristics.The influence range of support intensity is 15%–30%.Secondly,1.5 MPa is the upper limit of impact that the support strength can have on the front coal failure area.Thirdly,within a displacement range of 2.76 m from the coal wall,a support strength of1.5 MPa provides optimal control of the horizontal displacement of the coal. 展开更多
关键词 Extremely thick coal seam Fully mechanized top coal caving Support strength Support-surrounding rock interaction
在线阅读 下载PDF
酸性矿井水环境中矸石胶结充填体的强度演化及劣化规律
6
作者 赵永辉 郭育霞 冯国瑞 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第5期1560-1573,共14页
矸石胶结充填开采是一种重要的充填开采方法,然而,酸性矿井水会严重影响矸石胶结充填体的强度。在本研究中,将矸石胶结充填体试件分别置于不同环境(空气、水、硫酸溶液、硫酸与荷载耦合)中,测试了不同龄期试件的抗压强度、电阻率及超声... 矸石胶结充填开采是一种重要的充填开采方法,然而,酸性矿井水会严重影响矸石胶结充填体的强度。在本研究中,将矸石胶结充填体试件分别置于不同环境(空气、水、硫酸溶液、硫酸与荷载耦合)中,测试了不同龄期试件的抗压强度、电阻率及超声波波速,监测了加载过程中试件的声发射能量数值,同时结合扫描电镜和X衍射分析不同龄期充填体的微观结构。结果表明,1)空气中与水中养护的充填体抗压强度的增长趋势随龄期的增加而逐渐减缓。硫酸溶液中的充填体强度在前90天大于空气及水中养护的充填体强度。硫酸溶液与荷载耦合作用下充填体的强度随龄期的下降速率比单一硫酸溶液作用的较为缓慢;2)不同龄期矸石胶结充填体电阻率与超声波波速与强度有较好的对应关系。受侵蚀后矸石胶结充填体的破坏形式较为多样,且在加载不同阶段表现出不同的声发射能量特征,可以将声发射能量激增作为充填体的破坏前兆;3)侵蚀产物前期填充充填体内部孔隙,提高了其强度,后期会导致充填体膨胀开裂,强度降低。施加40%应力强度比的荷载会抵抗硫酸溶液的侵蚀。本文研究结果可以为充填体的耐侵蚀设计提供参考。 展开更多
关键词 酸性矿井水 矸石胶结充填体 劣化规律 电阻率 超声波波速 声发射能量 微观结构
在线阅读 下载PDF
Theoretically predicted innovative palladium stripe dopingcobalt(111) surface with excellent catalytic performance for carbonmonoxide oxidative coupling to dimethyl oxalate
7
作者 Bingying Han Neng Shi +5 位作者 Mengjie Dong Ye Liu Runping Ye Lixia Ling Riguang Zhang Baojun Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第9期235-243,共9页
Pd-based catalysts are extensively employed to catalyze CO oxidative coupling to generate DMO,while the expensive price and high usage of Pd hinder its massive application in industrial production.Designing Pd-based c... Pd-based catalysts are extensively employed to catalyze CO oxidative coupling to generate DMO,while the expensive price and high usage of Pd hinder its massive application in industrial production.Designing Pd-based catalysts with high efficiency and low Pd usage as well as expounding the catalytic mechanisms are significant for the reaction.In this study,we theoretically predict that Pd stripe doping Co(111)surface exhibits excellent performance than pure Pd(111),Pd monolayer supporting on Co(111)and Pd single atom doping Co(111)surface,and clearly expound the catalytic mechanisms through the density functional theory(DFT)calculation and micro-reaction kinetic model analysis.It is obtained that the favorable reaction pathway is COOCH_(3)-COOCH_(3)coupling pathway over these four catalysts,while the rate-controlling step is COOCH_(3)+CO+OCH_(3)→2COOCH_(3)on Pd stripe doping Co(111)surface,which is different from the case(2COOCH_(3)→DMO)on pure Pd(111),Pd monolayer supporting on Co(111)and Pd single atom doping Co(111)surface.This study can contribute a certain reference value for developing Pd-based catalysts with high efficiency and low Pd usage for CO oxidative coupling to DMO. 展开更多
关键词 CO oxidative coupling to DMO Pd stripe doping Co(111)surface Catalytic mechanism DFT calculation Micro-reaction kinetic model analysis Catalytic performance
在线阅读 下载PDF
Mg/Fe site-specific dual-doping to boost the performance of cobalt-free nickle-rich layered oxide cathode for high-energy lithium-ion batteries
8
作者 Yunting Wang Gaohui Du +7 位作者 Di Han Wenhao Shi Jiahao Deng Huayu Li Wenqi Zhao Shukai Ding Qingmei Su Bingshe Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期670-679,共10页
Layer-type LiNi0.9Mn0.1O2is promising to be the primary cathode material for lithium-ion batteries(LIBs)due to its excellent electrochemical performance.Unfortunately,the cathode with high nickel content suffers from ... Layer-type LiNi0.9Mn0.1O2is promising to be the primary cathode material for lithium-ion batteries(LIBs)due to its excellent electrochemical performance.Unfortunately,the cathode with high nickel content suffers from severely detrimental structural transformation that causes rapid capacity attenuation.Herein,site-specific dual-doping with Fe and Mg ions is proposed to enhance the structural stability of LiNi0.9Mn0.1O2.The Fe3+dopants are inserted into transition metal sites(3b)and can favorably provide additional redox potential to compensate for charge and enhance the reversibility of anionic redox.The Mg ions are doped into the Li sites(3a)and serve as O_(2)^(-)-Mg^(2+)-O_(2)^(-)pillar to reinforce the electrostatic cohesion between the two adjacent transition-metal layers,which further suppress the cracking and the generation of harmful phase transitions,ultimately improving the cyclability.The theoretical calculations,including Bader charge and crystal orbital Hamilton populations(COHP)analyses,confirm that the doped Fe and Mg can form stable bonds with oxygen and the electrostatic repulsion of O_(2)^(-)-O_(2)^(-)can be effectively suppressed,which effectively mitigates oxygen anion loss at the high delithiation state.This dual-site doping strategy offers new avenues for understanding and regulating the crystalline oxygen redox and demonstrates significant potential for designing high-performance cobalt-free nickel-rich cathodes. 展开更多
关键词 Cobalt-free Layered oxide Cathode Dual dopants Density functional theory calculation
在线阅读 下载PDF
Failure mechanisms and destruction characteristics of cemented coal gangue backfill under compression effect of non-uniform load
9
作者 FENG Guo-rui GUO Wei +5 位作者 QI Ting-ye LI Zhu CUI Jia-qing WANG Hao-chen CUI Ye-kai MA Jing-kai 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第8期2676-2693,共18页
Backfill mining is one of the most important technical means for controlling strata movement and reducing surface subsidence and environmental damage during exploitation of underground coal resources. Ensuring the sta... Backfill mining is one of the most important technical means for controlling strata movement and reducing surface subsidence and environmental damage during exploitation of underground coal resources. Ensuring the stability of the backfill bodies is the primary prerequisite for maintaining the safety of the backfilling working face, and the loading characteristics of backfill are closely related to the deformation and subsidence of the roof. Elastic thin plate model was used to explore the non-uniform subsidence law of the roof, and then the non-uniform distribution characteristics of backfill bodies’ load were revealed. Through a self-developed non-uniform loading device combined with acoustic emission (AE) and digital image correlation (DIC) monitoring technology, the synergistic dynamic evolution law of the bearing capacity, apparent crack, and internal fracture of cemented coal gangue backfills (CCGBs) under loads with different degrees of non-uniformity was deeply explored. The results showed that: 1) The uniaxial compressive strength (UCS) of CCGB increased and then decreased with an increase in the degree of non-uniformity of load (DNL). About 40% of DNL was the inflection point of DNL-UCS curve and when DNL exceeded 40%, the strength decreased in a cliff-like manner;2) A positive correlation was observed between the AE ringing count and UCS during the loading process of the specimen, which was manifested by a higher AE ringing count of the high-strength specimen. 3) Shear cracks gradually increased and failure mode of specimens gradually changed from “X” type dominated by tension cracks to inverted “Y” type dominated by shear cracks with an increase in DNL, and the crack opening displacement at the peak stress decreased and then increased. The crack opening displacement at 40% of the DNL was the smallest. This was consistent with the judgment of crack size based on the AE b-value, i. e., it showed the typical characteristics of “small b-value-large crack and large b-value-small crack”. The research results are of significance for preventing the instability and failure of backfill. 展开更多
关键词 cemented coal gangue backfill non-uniform load degree of non-uniformity of load failure mode crack opening displacement
在线阅读 下载PDF
The use of carbon-based particle electrodes in three-dimensional electrode reactors for wastewater treatment
10
作者 LU Hua-yu LIU Wei-feng +1 位作者 QIN Lei LIU Xu-guang 《新型炭材料(中英文)》 SCIE EI CAS CSCD 北大核心 2024年第5期973-991,共19页
The use of three-dimensional(3D)electrodes in water treatment is competitive because of their high catalytic efficiency,low energy consumption and promising development.The use of particle electrodes is a key research... The use of three-dimensional(3D)electrodes in water treatment is competitive because of their high catalytic efficiency,low energy consumption and promising development.The use of particle electrodes is a key research focus in this technology.They are usually in the form of particles that fill the space between the cathode and anode,and the selection of materials used is important.Carbon-based materials are widely used because of their large specific surface area,good adsorption performance,high chemical stability and low cost.The principles of 3D electrode technology are introduced and recent research on its use for degrading organic pollutants using carbon-based particle electrodes is summarized.The classification of particle electrodes is introduced and the challenges for the future development of carbon-based particle electrodes in wastewater treatment are discussed. 展开更多
关键词 Environmental pollution Three-dimensional electrode technology Carbon-based materials Carbon-based particle electrode
在线阅读 下载PDF
Compressive performance of innovative reinforced pillars in closed/abandoned mines
11
作者 LI Jian BAI Jin-wen +6 位作者 FENG Guo-rui WANG Shan-yong ZHAO Hong-chao MI Jia-chen PAN Rui-kai SHI Xu-dong MA Jun-biao 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第8期2780-2793,共14页
Pillar is closely related to the stability and reliability of underground spaces in closed/abandoned mines.The present research introduced a new technique to strengthen square cement mortar columns via fiber-reinforce... Pillar is closely related to the stability and reliability of underground spaces in closed/abandoned mines.The present research introduced a new technique to strengthen square cement mortar columns via fiber-reinforced polymer(FRP)strips to verify the strengthening effect of FRP on pillars.Compared to a fully wrapped FRP jacket,the advantages of FRP strip are cost-effective and easy-to-construct.A series of compression tests as well as theoretical analysis were carried out to explore the mechanical behavior of square cement mortar specimens partially strengthened with FRP strips.The results verified the effectiveness of FRP strips in enhancing the stress and strain of cement mortar.Different from unconfined cement mortar specimens,these FRP-strengthened cement mortar specimens are featured with the double-peaked behaviors,mainly attributed to the stress state transformation from a one-dimensional to a three-dimensional stress state.It also indicated that the enhancement of stress increased with the FRP strip width.Moreover,the brittle-ductile transition ductile failure characteristics were also observed in FRP-confined cement mortar specimens.The ultimate ductility of the cement mortar specimen decreases gradually with the growth of the FRP strip width.The main contribution of this research is to enrich the strengthening techniques for residual pillars. 展开更多
关键词 fiber-reinforced polymer uniaxial compression partially strengthening double-peaked behaviors brittle-ductile transition
在线阅读 下载PDF
Carbon nanotubes-reinforced polylactic acid/hydroxyapatite porous scaffolds for bone tissue engineering
12
作者 Weiwei Lan Mingbo Wang +6 位作者 Zhenjun Lv Jun Li Fuying Chen Ziwei Liang Di Huang Xiaochun Wei Weiyi Chen 《Frontiers of Materials Science》 SCIE CSCD 2024年第1期59-69,共11页
In the field of bone defect repair,critical requirements for favorable cytocompatibility and optimal mechanical properties have propelled research efforts towards the development of composite materials.In this study,c... In the field of bone defect repair,critical requirements for favorable cytocompatibility and optimal mechanical properties have propelled research efforts towards the development of composite materials.In this study,carbon nanotubes/polylactic acid/hydroxyapatite(CNTs/PLA/HA)scaffolds with different contents(0.5,1,1.5 and 2 wt.%)of CNTs were prepared by the thermally induced phase separation(TIPS)method.The results revealed that the composite scaffolds had uniform pores with high porosities over 68%and high through performances.The addition of CNTs significantly enhanced the mechanical properties of resulted PLA/HA,in which the 1.5 wt.%CNTs/PLA/HA composite scaffold demonstrated the optimum mechanical behaviors with the bending elastic modulus of(868.5±12.34)MPa,the tensile elastic modulus of(209.51±12.73)MPa,and the tensile strength of(3.26±0.61)MPa.Furthermore,L929 cells on the 1.5 wt.%CNTs/PLA/HA scaffold displayed good spreading performance and favorable cytocompatibility.Therefore,it is expected that the 1.5 wt.%CNTs/PLA/HA scaffold has potential applications in bone tissue engineering. 展开更多
关键词 CNTs/PLA/HA scaffold TIPS method mechanical property bone tissue engineering
原文传递
3D bioprinting of in vitro porous hepatoma models:establishment,evaluation,and anticancer drug testing
13
作者 Xiaoyuan Wang Zixian Liu +7 位作者 Qianqian Duan Boye Zhang Yanyan Cao Zhizhong Shen Meng Li Yanfeng Xi Jianming Wang Shengbo Sang 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第2期137-152,共16页
Traditional tumor models do not tend to accurately simulate tumor growth in vitro or enable personalized treatment and are particularly unable to discover more beneficial targeted drugs.To address this,this study desc... Traditional tumor models do not tend to accurately simulate tumor growth in vitro or enable personalized treatment and are particularly unable to discover more beneficial targeted drugs.To address this,this study describes the use of threedimensional(3D)bioprinting technology to construct a 3D model with human hepatocarcinoma SMMC-7721 cells(3DP-7721)by combining gelatin methacrylate(GelMA)and poly(ethylene oxide)(PEO)as two immiscible aqueous phases to form a bioink and innovatively applying fluorescent carbon quantum dots for long-term tracking of cells.The GelMA(10%,mass fraction)and PEO(1.6%,mass fraction)hydrogel with 3:1 volume ratio offered distinct pore-forming characteristics,satisfactorymechanical properties,and biocompatibility for the creation of the 3DP-7721 model.Immunofluorescence analysis and quantitative real-time fluorescence polymerase chain reaction(PCR)were used to evaluate the biological properties of the model.Compared with the two-dimensional culture cell model(2D-7721)and the 3D mixed culture cell model(3DM-7721),3DP-7721 significantly improved the proliferation of cells and expression of tumor-related proteins and genes.Moreover,we evaluated the differences between the three culture models and the effectiveness of antitumor drugs in the three models and discovered that the efficacy of antitumor drugs varied because of significant differences in resistance proteins and genes between the three models.In addition,the comparison of tumor formation in the three models found that the cells cultured by the 3DP-7721 model had strong tumorigenicity in nude mice.Immunohistochemical evaluation of the levels of biochemical indicators related to the formation of solid tumors showed that the 3DP-7721 model group exhibited pathological characteristics of malignant tumors,the generated solid tumors were similar to actual tumors,and the deterioration was higher.This research therefore acts as a foundation for the application of 3DP-7721 models in drug development research. 展开更多
关键词 3D bioprinting Hepatoma tumor models Drug screening Antitumor drug development
在线阅读 下载PDF
Highly Thermally Conductive and Structurally Ultra‑Stable Graphitic Films with Seamless Heterointerfaces for Extreme Thermal Management
14
作者 Peijuan Zhang Yuanyuan Hao +17 位作者 Hang Shi Jiahao Lu Yingjun Liu Xin Ming Ya Wang Wenzhang Fang Yuxing Xia Yance Chen Peng Li Ziqiu Wang Qingyun Su Weidong Lv Ji Zhou Ying Zhang Haiwen Lai Weiwei Gao Zhen Xu Chao Gao 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期383-397,共15页
Highly thermally conductive graphitic film(GF)materials have become a competitive solution for the thermal management of high-power electronic devices.However,their catastrophic structural failure under extreme altern... Highly thermally conductive graphitic film(GF)materials have become a competitive solution for the thermal management of high-power electronic devices.However,their catastrophic structural failure under extreme alternating thermal/cold shock poses a significant challenge to reliability and safety.Here,we present the first investigation into the structural failure mechanism of GF during cyclic liquid nitrogen shocks(LNS),which reveals a bubbling process characterized by“permeation-diffusion-deformation”phenomenon.To overcome this long-standing structural weakness,a novel metal-nanoarmor strategy is proposed to construct a Cu-modified graphitic film(GF@Cu)with seamless heterointerface.This well-designed interface ensures superior structural stability for GF@Cu after hundreds of LNS cycles from 77 to 300 K.Moreover,GF@Cu maintains high thermal conductivity up to 1088 W m^(−1)K^(−1)with degradation of less than 5%even after 150 LNS cycles,superior to that of pure GF(50%degradation).Our work not only offers an opportunity to improve the robustness of graphitic films by the rational structural design but also facilitates the applications of thermally conductive carbon-based materials for future extreme thermal management in complex aerospace electronics. 展开更多
关键词 Highly thermally conductive Structurally ultra-stable Graphitic film Extreme thermal management Liquid nitrogen bubbling
在线阅读 下载PDF
High Sensitivity Submicron Scale Temperature Sensor Based on Perovskite Nanoplatelet Lasers
15
作者 ZHAO Ruofan TAO Jianxun +7 位作者 XI Yuying CHEN Jiangzhao JI Ting WANG Wenyan WEN Rong CUI Yanxia CHEN Junsheng LI Guohui 《发光学报》 EI CAS CSCD 北大核心 2024年第9期1511-1520,共10页
Submicron scale temperature sensors are crucial for a range of applications,particularly in micro and na-noscale environments.One promising solution involves the use of active whispering gallery mode(WGM)microresonato... Submicron scale temperature sensors are crucial for a range of applications,particularly in micro and na-noscale environments.One promising solution involves the use of active whispering gallery mode(WGM)microresonators.These resonators can be remotely excited and read out using free-space structures,simplifying the process of sensing.In this study,we present a submicron-scale temperature sensor with a remarkable sensitivity up to 185 pm/℃based on a trian-gular MAPbI3 nanoplatelet(NPL)laser.Notably,as temperature changes,the peak wavelength of the laser line shifts lin-early.This unique characteristic allows for precise temperature sensing by tracking the peak wavelength of the NPL laser.The optical modes are confined within the perovskite NPL,which measures just 85 nm in height,due to total internal reflec-tion.Our NPL laser boasts several key features,including a high Q of~2610 and a low laser threshold of about 19.8μJ·cm^(−2).The combination of exceptional sensitivity and ultra-small size makes our WGM device an ideal candidate for integration into systems that demand compact temperature sensors.This advancement paves the way for significant prog-ress in the development of ultrasmall temperature sensors,opening new possibilities across various fields. 展开更多
关键词 temperature sensor submicron scale perovskite nanoplatelet
在线阅读 下载PDF
Influence of backfilling rate on the stability of the"backfilling bodyimmediate roof"cooperative bearing structure 被引量:7
16
作者 Xianjie Du Guorui Feng +2 位作者 Min Zhang Zehua Wang Wenhao Liu 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第6期1197-1206,共10页
To reduce the cost of backfilling coal mining and utilize the underground space of coal mines,a new backfilling mining method with low backfilling rate called constructional backfilling coal mining(CBCM)is proposed.Th... To reduce the cost of backfilling coal mining and utilize the underground space of coal mines,a new backfilling mining method with low backfilling rate called constructional backfilling coal mining(CBCM)is proposed.The "backfilling body-immediate roof" cooperative bearing structure of CBCM is analyzed by establishing the model of the medium thick plate on an elastic foundation.The influence of the backfilling rate on the stability of overlying strata is analyzed by the numerical simulation experiment.The control effect of CBCM is verified by a physic similar simulation test.The economic benefit of CBCM is analyzed.The conclusions are:the deformation characteristics of the immediate roof and critical backfilling spacing in CBCM can be analyzed based on the Hu Haichang’s theory.Exerting the bearing capacity of the immediate roof is beneficial to the stability of the overlying strata.The CBCM has a good control effect on the overburden in Xinyang Mine when the backfilling rate is lower than 25%.The backfilling cost of per ton coal is 37.39 yuan/t when the backfilling rate is 13.7%,with a decrease rate of 56.63%than the full-filling.The research results can provide theoretical support for the application of CBCM in coal mining. 展开更多
关键词 Constructional backfilling coal mining Immediate roof Cooperative bearing structure Medium thick plate on elastic foundation Backfilling rate Overlying strata
在线阅读 下载PDF
Unraveling the degradation mechanism of LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) at the high cut-off voltage for lithium ion batteries 被引量:5
17
作者 Liming Wang Qingmei Su +10 位作者 Bin Han Weihao Shi Gaohui Du Yunting Wang Huayv Li Lin Gu Wenqi Zhao Shukai Ding Miao Zhang Yongzhen Yang Bingshe Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期428-437,I0011,共11页
LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)layered oxides have been regarded as promising alternative cathodes for the next generation of high-energy lithium ion batteries(LIBs)due to high discharge capacities and energy ... LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)layered oxides have been regarded as promising alternative cathodes for the next generation of high-energy lithium ion batteries(LIBs)due to high discharge capacities and energy densities at high operation voltage.However,the capacity fading under high operation voltage still restricts the practical application.Herein,the capacity degradation mechanism of NCM811 at atomic-scale is studied in detail under various cut-off voltages using aberration-corrected scanning transmission electron microscopy(STEM).It is observed that the crystal structure of NCM811 evolution from a layered structure to a rock-salt phase is directly accompanied by serious intergranular cracks under 4.9 V,which is distinguished from the generally accepted structure evolution of layered,disordered layered,defect rock salt and rock salt phases,also observed under 4.3 and 4.7 V.The electron energy loss spectroscopy analysis also confirms the reduction of Ni and Co from the surface to the bulk,not the previously reported only Li/Ni interlayer mixing.The degradation mechanism of NCM811 at a high cut-off voltage of4.9 V is attributed to the formation of intergranular cracks induced by defects,the direct formation of the rock salt phase,and the accompanied reduction of Ni^(2+)and Co^(2+)phases from the surface to the bulk. 展开更多
关键词 Ni-rich layered cathode Electrochemical performance Degradation mechanism Crack Atomic scale
在线阅读 下载PDF
Monodomain Liquid Crystals of Two-Dimensional Sheets by Boundary-Free Sheargraphy 被引量:2
18
作者 Min Cao Senping Liu +10 位作者 Qingli Zhu Ya Wang Jingyu Ma Zeshen Li Dan Chang Enhui Zhu Xin Ming Yingjun Liu Yanqiu Jiang Zhen Xu Chao Gao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第12期14-26,共13页
Eliminating topological defects to achieve monodomain liquid crystals is highly significant for the fundamental studies of soft matter and building long-range ordered materials.However,liquid crystals are metastable a... Eliminating topological defects to achieve monodomain liquid crystals is highly significant for the fundamental studies of soft matter and building long-range ordered materials.However,liquid crystals are metastable and sensitive to external stimuli,such as flow,confinement,and electromagnetic fields,which cause their intrinsic polycrystallinity and topological defects.Here,we achieve the monodomain liquid crystals of graphene oxide over 30 cm through boundary-free sheargraphy.The obtained monodomain liquid crystals exhibit large-area uniform alignment of sheets,which has the same optical polarized angle and intensity.The monodomain liquid crystals provide bidirectionally ordered skeletons,which can be applied as lightweight thermal management materials with bidirectionally high thermal and electrical conductivity.Furthermore,we extend the controllable topology of two-dimensional colloids by introducing singularities and disclinations in monodomain liquid crystals.Topological structures with defect strength from−2 to+2 were realized.This work provides a facile methodology to study the structural order of soft matter at a macroscopic level,facilitating the fabrication of metamaterials with tunable and highly anisotropic architectures. 展开更多
关键词 MONODOMAIN Liquid crystals Graphene oxide Boundary-free sheargraphy Topological structure
在线阅读 下载PDF
Boosting Zn^(2+)kinetics via the multifunctional pre-desolvation interface for dendrite-free Zn anodes 被引量:1
19
作者 Bin Luo Yang Wang +5 位作者 Leilei Sun Sinan Zheng Guosheng Duan Zhean Bao Zhizhen Ye Jingyun Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期632-641,I0016,共11页
Aqueous zinc ion batteries(AZIBs)are an advanced secondary battery technology to supplement lithiumion batteries.It has been widely concerned and developed recently based on the element abundance and safety advantages... Aqueous zinc ion batteries(AZIBs)are an advanced secondary battery technology to supplement lithiumion batteries.It has been widely concerned and developed recently based on the element abundance and safety advantages.However,AZIBs still suffer from serious problems such as dendrites Zn,hydrogen evolution corrosion,and surface passivation,which hinder the further commercial application of AZIBs.Herein,an in-situ ZnCr_(2)O_(4)(ZCO)interface endows AZIBs with dendrite-free and ultra-low polarization by realizing Zn^(2+)pre-desolvation,constraining H2O-induced corrosio n,and boosting Zn^(2+)transport/deposition kinetics.The ZCO@Zn anode harvests an ultrahigh cumulative capacity of~20000 mA h cm^(-2)(cycle time:over 4000 h)at a high current density of 10 mA cm^(-2),indicating excellent reversibility of Zn deposition,Such superior performance is among the best cyclability in AZIBs.Moreover,the multifunctional ZCO interface improves the Coulombic efficiency(CE)to 99.7%for more than 2600 cycles.The outstanding electrochemical performance is also verified by the long-term cycle stability of ZCO@Zn//α-MnO_(2) full cells.Notably,the as-proposed method is efficient and low-cost enough to enable mass production.This work provides new insights into the uniform Zn electrodeposition at the scale of interfacial Zn^(2+)predesolvation and kinetics improvement. 展开更多
关键词 Zinc ion battery Dendrite-free Zn anode In-situ reaction Pre-desolvation Zn^(2+)kinetics
在线阅读 下载PDF
Assessing quinoline removal performances of an aerobic continuous moving bed biofilm reactor(MBBR) bioaugmented with Pseudomonas citronellolis LV1 被引量:1
20
作者 Hu Chen Ying Wang +1 位作者 Puyu Wang Yongkang Lv 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第5期132-140,共9页
This study evaluated the bioaugmentation potential of a quinoline-degrading strain Pseudomonas citronellolis LV1 inoculation into activated sludge for treating quinoline wastewater, and results indicated the inoculati... This study evaluated the bioaugmentation potential of a quinoline-degrading strain Pseudomonas citronellolis LV1 inoculation into activated sludge for treating quinoline wastewater, and results indicated the inoculation of LV1 in aerobic continuous MBBR could substantially improve the quinoline removal performance with an improved removal efficiency of 34% averagely when quinoline was used as the sole carbon and nitrogen source. Additionally, efficient removal of quinoline in enhanced MBBR occurred at the influent p H of 7.0–8.0, hydraulic retention time(HRT) of 24–28 h and influent quinoline concentration of 100–700 mg·L^(-1). High-throughput sequencing analysis indicated that bioaugmentation could increase microbial diversity and shape the microbial community structure. Although the inoculant LV1 did not remain its dominance in stage Ⅲ, bioaugmentation indeed induced the formation of effective microbial community, and the indigenous microbes including Flavobacterium, Pseudoxanthomonas,Pseudomonas, Vermamoeba, Dyadobacter and Sphingomonas might play the key role in quinoline removal.According to the PICRUSt, the enhanced genes encoding aromatic ring-cleavage enzyme, especially for Nheterocyclic ring-cleavage enzymes, could lead to the improved removal performance of quinoline in bioaugmentation stage. Moreover, the enhanced MBBR treated well actual coking wastewater, as indicated by high removal performance of quinoline, phenol and COD. 展开更多
关键词 Aerobic quinoline degradation Pseudomonas citronellolis LV1 BIOAUGMENTATION Microbial community Coking wastewater
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部