To understand the enhancing effect and fiber-reinforced mechanism of composite fibers reinforced cement concrete, the influences of composite fibers on micro-cracks and the distribution of composite fibers were evalua...To understand the enhancing effect and fiber-reinforced mechanism of composite fibers reinforced cement concrete, the influences of composite fibers on micro-cracks and the distribution of composite fibers were evaluated by optical electron micrometer(OEM) and scanning electron microscope(SEM). Three kinds of fiber, such as polyacrylonitrile-based carbon fiber, basalt fiber, and glass fiber, were used in the composite fibers reinforced cement concrete. The composite fibers could form a stable structure in concrete after the liquid-phase coupling treatment, gas-liquid double-effect treatment, and inert atmosphere drying. The mechanical properties of composite fibers reinforced concrete(CFRC) were studied by universal test machine(UTM). Moreover, the effect of composite fibers on concrete was analyzed based on the toughness index and residual strength index. The results demonstrated that the composite fibers could improve the mechanical properties of concrete, while the excessive amount of composite fibers had an adverse effect on the mechanical properties of concrete. The composite fibers could significantly improve the toughness index of CFRC, and the increment rate is more than 30%. The composite fibers could form a mesh structure, which could promote the stability of concrete and guarantee the excellent mechanical properties.展开更多
In order to inhibit and remove the thin ice and extend the lifetime of the damaged bridge, the self-healing mechanism and hydrophobic performance of asphalt modified by siloxane and polyurethane (ASP) were studied by ...In order to inhibit and remove the thin ice and extend the lifetime of the damaged bridge, the self-healing mechanism and hydrophobic performance of asphalt modified by siloxane and polyurethane (ASP) were studied by dynamic shear rheology (DSR), fluorescence microscope (FM), atomic force microscope (AFM), the fracture-healing-re-fracture test and molecular simulations. The experimental results indicated that the selfhealing capability of ASP increased with increasing heating time and temperature. Furthermore, the addition of siloxane could improve the reaction energy barrier and complex modulus, and it is believed that the self-healing is a viscosity driven process, consisting of two parts namely crack closure and properties recovery. Contact angle of ASP increased with the increasing siloxane content and it deduced that the siloxane could improve the hydrophobic performance of ASP and the ASP molecule model could simulate well the self-healing mechanism and hydrophobic performance of ASP.展开更多
Geosynthetic-reinforced and pile-supported (GRPS) embankment has been increasingly constructed in a large number of regions and for a wide range of projects in the past decades. However, many disadvantages are expos...Geosynthetic-reinforced and pile-supported (GRPS) embankment has been increasingly constructed in a large number of regions and for a wide range of projects in the past decades. However, many disadvantages are exposed through a lot of applications on conventional technique of GRPS embankment (called CT embankment), i.e., intolerable settlement and lateral displacement, low geosynthetic efficiency, etc. In view of these disadvantages, the fixed geosynthetic technique of GRPS embankment (called FGT embankment) is developed in this work. In this system, the geosynthetic is fixed on the pile head by the steel bar fulcrum and concrete fixed top. The principles and construction techniques involved in the FGT embankment are described firstly. Then, the numerical analysis method and two-stage analysis method are used to study the performance of FGT embankment, respectively. It is shown that the FGT embankment can provide a better improvement technique to construct a high embankment over soft ground.展开更多
To overcome the deficiencies of conventional geosynthetic-reinforced and pile-supported (GRPS) embankment, a new improvement technique, fixed geosynthetic technique of GRPS embankment (FGT embankment), was developed a...To overcome the deficiencies of conventional geosynthetic-reinforced and pile-supported (GRPS) embankment, a new improvement technique, fixed geosynthetic technique of GRPS embankment (FGT embankment), was developed and introduced. Based on the discussion about the load transfer mechanism of FGT embankment, a simplified check method of the requirement of geosynthetic tensile strength and a mechanical model of the FGT embankment were proposed. Two conditions, the pile cap and pile beam conditions are considered in the mechanical model. The finite difference method is used to solve the mechanical model owing to the complexity of the differential equations and the soil strata. Then, the numerical procedure is programmed. Finally, a field test is conducted to verify the mechanical model and the calculated results are in good agreement with field measured data.展开更多
In order to study the disturbance of the liquefiable stratum caused by the vibration induced by construction of the shield machine,the construction process of the shield tunnel was simulated based on the finite differ...In order to study the disturbance of the liquefiable stratum caused by the vibration induced by construction of the shield machine,the construction process of the shield tunnel was simulated based on the finite difference software FLAC 3 D.A sinusoidal velocity boundary that simulates the vibration of shield construction is applied in the horizontal direction of the excavation surface,and dynamic response analysis is carried out to analyze the excess pore water pressure,acceleration,and vertical effective stress time-history curves.The research results show that in the liquefiable stratum,the vibration induced by shield construction will form a certain liquefaction area in the soil in front of the excavation face.The area has not developed to the ground.The area where the vibration induced by shield construction has a great influence on the excess pore water pressure of the soil is below the excavation surface.This area is vortex-shaped.The excess pore water pressure of the overlying soil layer on the excavation surface increases,and the vertical effective stress decreases.The horizontal vibration wave induced by shield construction has no obvious attenuation in the horizontal direction,but has obvious attenuation during the propagation to the ground surface.In the area where the peak value of soil acceleration is large,the soil liquefaction is serious.展开更多
Micro steel pipe pile was used for existing foundation reinforcement and renovation.An energy micro pile-raft foundation equipped with heat exchange tube was constructed in silty clay.The diameter and the length of th...Micro steel pipe pile was used for existing foundation reinforcement and renovation.An energy micro pile-raft foundation equipped with heat exchange tube was constructed in silty clay.The diameter and the length of the energy micro pile are 160 mm and 13.0 m,respectively.A series of in situ thermal performance tests were carried out by controlling cycle heating,in which the inlet and outlet water temperatures,flow rate,and thermomechanical properties of the energy micro pile were measured.Combined with a numerical simulation method,the thermomechanical stresses and displacement of the raft were also analyzed and discussed.The energy micro pile-raft foundation was also analyzed for different combinations of energy piles and nonenergy piles in the group.Results show that the micro pile-raft foundation can provide sufficient heat exchange compared with other types of ground heat exchangers.Differential settlement at both the pile top and tip were observed for the groups that contained both energy piles and nonenergy piles.展开更多
Vehicle bumps at a bridge approach caused by the differential settlement between a bridge and an adjacent backfill embankment are one of the most difficult problems in geotechnical engineering. Large vehicle bumps mak...Vehicle bumps at a bridge approach caused by the differential settlement between a bridge and an adjacent backfill embankment are one of the most difficult problems in geotechnical engineering. Large vehicle bumps make drivers uncomfortable and cause large impact loads on vehicles and the bridge abutment. A new ground-improvement technique called fixed-geosynthetic-reinforced and pile-supported embankment(FGT embankment) was developed and used to alleviate vehicle bumps at a trial bridge-approach site located in central China. To distribute the differential settlement between the bridge and adjacent backfill embankment over a long transition zone, the following three techniques were used at the trial bridge-approach site:(a) the FGT embankment,(b) conventional geosynthetic-reinforced and pile-supported embankment(CT embankment), and(c) geosynthetic-reinforced embankment without piles(GR embankment). The performance of all three techniques in the field trial was investigated by field measurements involving earth pressure cells, geosynthetic deformation sensors, and settlement gauges. The FGT and CT embankments exhibited better performance than the GR embankment. Compared with the CT embankment, the FGT embankment was more effective at ground improvement. At an elevation of 4.0 m from the base of the embankment, the pressures below the geosynthetic were smaller than those above the geosynthetic at the closest measurement point. The difference between the pressures between above and below the geosynthetic tended to increase with the embankment height.展开更多
基金Funded by the National Natural Science Foundation of China(No.51778479).
文摘To understand the enhancing effect and fiber-reinforced mechanism of composite fibers reinforced cement concrete, the influences of composite fibers on micro-cracks and the distribution of composite fibers were evaluated by optical electron micrometer(OEM) and scanning electron microscope(SEM). Three kinds of fiber, such as polyacrylonitrile-based carbon fiber, basalt fiber, and glass fiber, were used in the composite fibers reinforced cement concrete. The composite fibers could form a stable structure in concrete after the liquid-phase coupling treatment, gas-liquid double-effect treatment, and inert atmosphere drying. The mechanical properties of composite fibers reinforced concrete(CFRC) were studied by universal test machine(UTM). Moreover, the effect of composite fibers on concrete was analyzed based on the toughness index and residual strength index. The results demonstrated that the composite fibers could improve the mechanical properties of concrete, while the excessive amount of composite fibers had an adverse effect on the mechanical properties of concrete. The composite fibers could significantly improve the toughness index of CFRC, and the increment rate is more than 30%. The composite fibers could form a mesh structure, which could promote the stability of concrete and guarantee the excellent mechanical properties.
基金Funded by the National Natural Science Foundation of China(No.51808329)Science and Technology Department of Shanxi Province International Cooperation(No.201603D421027)the Special Project of Commercialization of Shanxi Province Research Foundation(No.201804D131034)
文摘In order to inhibit and remove the thin ice and extend the lifetime of the damaged bridge, the self-healing mechanism and hydrophobic performance of asphalt modified by siloxane and polyurethane (ASP) were studied by dynamic shear rheology (DSR), fluorescence microscope (FM), atomic force microscope (AFM), the fracture-healing-re-fracture test and molecular simulations. The experimental results indicated that the selfhealing capability of ASP increased with increasing heating time and temperature. Furthermore, the addition of siloxane could improve the reaction energy barrier and complex modulus, and it is believed that the self-healing is a viscosity driven process, consisting of two parts namely crack closure and properties recovery. Contact angle of ASP increased with the increasing siloxane content and it deduced that the siloxane could improve the hydrophobic performance of ASP and the ASP molecule model could simulate well the self-healing mechanism and hydrophobic performance of ASP.
基金Foundation item: Project(51278216) supported by the National Natural Science Foundation of China Project(11-2-05) supported by the Scientific and Technological Project for Shanxi Communication Construction, China Project(HF-08-01-2011-240) supported by the Graduates' Innovation Fund of Huazhong University of Science and Technology, China
文摘Geosynthetic-reinforced and pile-supported (GRPS) embankment has been increasingly constructed in a large number of regions and for a wide range of projects in the past decades. However, many disadvantages are exposed through a lot of applications on conventional technique of GRPS embankment (called CT embankment), i.e., intolerable settlement and lateral displacement, low geosynthetic efficiency, etc. In view of these disadvantages, the fixed geosynthetic technique of GRPS embankment (called FGT embankment) is developed in this work. In this system, the geosynthetic is fixed on the pile head by the steel bar fulcrum and concrete fixed top. The principles and construction techniques involved in the FGT embankment are described firstly. Then, the numerical analysis method and two-stage analysis method are used to study the performance of FGT embankment, respectively. It is shown that the FGT embankment can provide a better improvement technique to construct a high embankment over soft ground.
基金Project(51278216) supported by the National Natural Science Foundation of ChinaProject(20091341) supported by the Scientific Research Foundation for Returned Overseas Chinese Scholars,Ministry of Education,ChinaProject(HF-08-01-2011-240) supported by the Graduates’ Innovation Fund of Huazhong University of Science and Technology,China
文摘To overcome the deficiencies of conventional geosynthetic-reinforced and pile-supported (GRPS) embankment, a new improvement technique, fixed geosynthetic technique of GRPS embankment (FGT embankment), was developed and introduced. Based on the discussion about the load transfer mechanism of FGT embankment, a simplified check method of the requirement of geosynthetic tensile strength and a mechanical model of the FGT embankment were proposed. Two conditions, the pile cap and pile beam conditions are considered in the mechanical model. The finite difference method is used to solve the mechanical model owing to the complexity of the differential equations and the soil strata. Then, the numerical procedure is programmed. Finally, a field test is conducted to verify the mechanical model and the calculated results are in good agreement with field measured data.
基金Scientific and Technological Innovation Project for Excellent Talents of Shanxi Province(201605D211037)Scientific Research Fund for Returned Scholars of Shanxi Province(2020038)。
文摘In order to study the disturbance of the liquefiable stratum caused by the vibration induced by construction of the shield machine,the construction process of the shield tunnel was simulated based on the finite difference software FLAC 3 D.A sinusoidal velocity boundary that simulates the vibration of shield construction is applied in the horizontal direction of the excavation surface,and dynamic response analysis is carried out to analyze the excess pore water pressure,acceleration,and vertical effective stress time-history curves.The research results show that in the liquefiable stratum,the vibration induced by shield construction will form a certain liquefaction area in the soil in front of the excavation face.The area has not developed to the ground.The area where the vibration induced by shield construction has a great influence on the excess pore water pressure of the soil is below the excavation surface.This area is vortex-shaped.The excess pore water pressure of the overlying soil layer on the excavation surface increases,and the vertical effective stress decreases.The horizontal vibration wave induced by shield construction has no obvious attenuation in the horizontal direction,but has obvious attenuation during the propagation to the ground surface.In the area where the peak value of soil acceleration is large,the soil liquefaction is serious.
基金The work presented in this paper was supported by the National Natural Science Foundation of China(Nos.51778212,51922037).
文摘Micro steel pipe pile was used for existing foundation reinforcement and renovation.An energy micro pile-raft foundation equipped with heat exchange tube was constructed in silty clay.The diameter and the length of the energy micro pile are 160 mm and 13.0 m,respectively.A series of in situ thermal performance tests were carried out by controlling cycle heating,in which the inlet and outlet water temperatures,flow rate,and thermomechanical properties of the energy micro pile were measured.Combined with a numerical simulation method,the thermomechanical stresses and displacement of the raft were also analyzed and discussed.The energy micro pile-raft foundation was also analyzed for different combinations of energy piles and nonenergy piles in the group.Results show that the micro pile-raft foundation can provide sufficient heat exchange compared with other types of ground heat exchangers.Differential settlement at both the pile top and tip were observed for the groups that contained both energy piles and nonenergy piles.
基金supported by the National Natural Science Foundation of China(Grant No.51278216)the Research Fund of the Key Laboratory of Transportation Tunnel Engineering+1 种基金Ministry of Education(Grant No.TTE2014-05)the Basic Research Program in Shanxi Province(Grant No.2014021033-1)
文摘Vehicle bumps at a bridge approach caused by the differential settlement between a bridge and an adjacent backfill embankment are one of the most difficult problems in geotechnical engineering. Large vehicle bumps make drivers uncomfortable and cause large impact loads on vehicles and the bridge abutment. A new ground-improvement technique called fixed-geosynthetic-reinforced and pile-supported embankment(FGT embankment) was developed and used to alleviate vehicle bumps at a trial bridge-approach site located in central China. To distribute the differential settlement between the bridge and adjacent backfill embankment over a long transition zone, the following three techniques were used at the trial bridge-approach site:(a) the FGT embankment,(b) conventional geosynthetic-reinforced and pile-supported embankment(CT embankment), and(c) geosynthetic-reinforced embankment without piles(GR embankment). The performance of all three techniques in the field trial was investigated by field measurements involving earth pressure cells, geosynthetic deformation sensors, and settlement gauges. The FGT and CT embankments exhibited better performance than the GR embankment. Compared with the CT embankment, the FGT embankment was more effective at ground improvement. At an elevation of 4.0 m from the base of the embankment, the pressures below the geosynthetic were smaller than those above the geosynthetic at the closest measurement point. The difference between the pressures between above and below the geosynthetic tended to increase with the embankment height.