Thin strain-relaxed Si0.81Ge0.19 films (95 nm) on the Ar+ ion implanted Si substrates with different ener- gies (30 keV,40 keV and 60 keV) at the same implanted dose (3×1015cm-2) were grown by ultra high vacuum c...Thin strain-relaxed Si0.81Ge0.19 films (95 nm) on the Ar+ ion implanted Si substrates with different ener- gies (30 keV,40 keV and 60 keV) at the same implanted dose (3×1015cm-2) were grown by ultra high vacuum chemi- cal vapor deposition (UHVCVD). Rutherford backscattering/ion channeling (RBS/C),Raman spectra as well as atomic force microscopy (AFM) were used to characterize these SiGe films. Investigations by RBS/C demonstrate that these thin Si0.81Ge0.19 films were epitaxially grown on the Ar+ ion implanted Si substrates,although there existed lots of crystal defects. The relaxation extent of Si0.81Ge0.19 films on the Ar+ implanted Si substrates is larger than that in the unimplanted case,which were verified by Raman spectra. Considering the relaxation extent of strain,surface roughness and crystal defects in these SiGe films,the thin relaxed SiGe film on the 30 keV Ar+ implanted Si substrate is optimal.展开更多
基金Partially supported by the National Natural Sciences Foundation of China (No.10075072)
文摘Thin strain-relaxed Si0.81Ge0.19 films (95 nm) on the Ar+ ion implanted Si substrates with different ener- gies (30 keV,40 keV and 60 keV) at the same implanted dose (3×1015cm-2) were grown by ultra high vacuum chemi- cal vapor deposition (UHVCVD). Rutherford backscattering/ion channeling (RBS/C),Raman spectra as well as atomic force microscopy (AFM) were used to characterize these SiGe films. Investigations by RBS/C demonstrate that these thin Si0.81Ge0.19 films were epitaxially grown on the Ar+ ion implanted Si substrates,although there existed lots of crystal defects. The relaxation extent of Si0.81Ge0.19 films on the Ar+ implanted Si substrates is larger than that in the unimplanted case,which were verified by Raman spectra. Considering the relaxation extent of strain,surface roughness and crystal defects in these SiGe films,the thin relaxed SiGe film on the 30 keV Ar+ implanted Si substrate is optimal.