With widely availed clinically used radionuclides,Cer enkov luminescence imaging(CLI)has become a potential tool in the field of optical molecular imaging.However,the impulse noises introduced by high-energy gamma ray...With widely availed clinically used radionuclides,Cer enkov luminescence imaging(CLI)has become a potential tool in the field of optical molecular imaging.However,the impulse noises introduced by high-energy gamma rays that are generated during the decay of radionuclide reduce the image quality significantly,which affects the acauracy of quantitative analysis,as well as the three dimensional reconstruction.In this work,a novel denoising framework based on fuzzy dlustering and curvat ure driven difusion(CDD)is proposed to remove this kind of impulse noises.To improve the accuracy,the F u1zzy Local Information C-Means algorithm,where spatial information is evolved,is used.We evaluate the per formance of the proposed framework sys-tematically with a series of experiments,and the corresponding results demonstrate a better denoising effect than those from the commonly used median filter method.We hope this work may provide a useful data pre processing tool for CLI and its following studies.展开更多
As an emerging molecular imaging modality,cone-beam X-ray luminescence computed tomog-raphy(CB-XLCT)uses X-ray-excitable probes to produce near-infrared(NIR)luminescence and then reconst ructs three-dimensional(3D)dis...As an emerging molecular imaging modality,cone-beam X-ray luminescence computed tomog-raphy(CB-XLCT)uses X-ray-excitable probes to produce near-infrared(NIR)luminescence and then reconst ructs three-dimensional(3D)distribution of the probes from surface measurements.A proper photon-transportation model is critical to accuracy of XLCT.Here,we presented a systematic comparison between the common-used Monte Carlo model and simplified spherical harmonics(SPN).The performance of the two methods was evaluated over several main spec-trums using a known XLCT material.We designed both a global measurement based on the cosine similarity and a locally-averaged relative error,to quantitatively assess these methods.The results show that the SP_(3) could reach a good balance between the modeling accuracy and computational efficiency for all of the tested emission spectrums.Besides,the SP_(1)(which is equivalent to the difusion equation(DE))can be a reasonable alternative model for emission wavelength over 692nm.In vivo experiment further demonstrates the reconstruction perfor-mance of the SP:and DE.This study would provide a valuable guidance for modeling the photon-transportation in CB-XLCT.展开更多
Monte Carlo simulation of light propagation in turbid medium has been studied for years.A number of software packages have been developed to handle with such issue.However,it is hard to compare these simulation packag...Monte Carlo simulation of light propagation in turbid medium has been studied for years.A number of software packages have been developed to handle with such issue.However,it is hard to compare these simulation packages,especially for tissues with complex heterogeneous structures.Here,we first designed a group of mesh datasets generated by Iso2Mesh software,and used them to cross-validate the accuracy and to evaluate the performance of four Monte Carlo-based simulation packages,including Monte Carlo model of steady-state light transport in multi-layered tissues(MCML),tetrahedron-based inhomogeneous Monte Carlo optical simulator(TIMOS),Molecular Optical Simulation Environment(MOSE),and Mesh-based Monte Carlo(MMC).The performance of each package was evaluated based on the designed mesh datasets.The merits and demerits of each package were also discussed.Comparative results showed that the TIMOS package provided the best performance,which proved to be a reliable,efficient,and stable MC simulation package for users.展开更多
Fluorescence molecular tomography(FMT)is a fast-developing optical imaging modalitythat has great potential in early diagnosis of disease and drugs development.However,recon-struction algorithms have to address a high...Fluorescence molecular tomography(FMT)is a fast-developing optical imaging modalitythat has great potential in early diagnosis of disease and drugs development.However,recon-struction algorithms have to address a highly ill-posed problem to fulfll 3D reconstruction inFMT.In this contribution,we propose an efficient iterative algorithm to solve the large-scalereconstruction problem,in which the sparsity of fluorescent targets is taken as useful a prioriinformation in designing the reconstruction algorithm.In the implementation,a fast sparseapproximation scheme combined with a stage-wise learning strategy enable the algorithm to dealwith the ill-posed inverse problem at reduced computational costs.We validate the proposed fastiterative method with numerical simulation on a digital mouse model.Experimental results demonstrate that our method is robust for different finite element meshes and different Poissonnoise levels.展开更多
Bioluminescence tomography(BLT)is a promising imaging modality that can provide noninvasive three-dimensional visualization information on tumor distribution.In BLT reconstruction,the widely used methods based on regu...Bioluminescence tomography(BLT)is a promising imaging modality that can provide noninvasive three-dimensional visualization information on tumor distribution.In BLT reconstruction,the widely used methods based on regularization or greedy strategy face problems such as over-sparsity,over-smoothing,spatial discontinuity,poor robustness,and poor multi-target resolution.To deal with these problems,combining the advantages of the greedy strategies as well as regularization methods,we propose a hybrid reconstruction framework for model-based multispectral BLT using the support set of a greedy strategy as a feasible region and the Alpha-divergence to combine the weighted solutions obtained by L1-norm and L2-norm regularization methods.In numerical simulations with digital mouse and in vivo experiments,the results show that the proposed framework has better localization accuracy,spatial resolution,and multi-target resolution.展开更多
Cerenkov Luminescence Tomography(CLT)is a novel and potential imaging modality which can display the three-dimensional distribution of radioactive probes.However,due to severe ill-posed inverse problem,obtaining accur...Cerenkov Luminescence Tomography(CLT)is a novel and potential imaging modality which can display the three-dimensional distribution of radioactive probes.However,due to severe ill-posed inverse problem,obtaining accurate reconstruction results is still a challenge for traditional model-based methods.The recently emerged deep learning-based methods can directly learn the mapping relation between the surface photon intensity and the distribution of the radioactive source,which effectively improves the performance of CLT reconstruction.However,the previously proposed deep learning-based methods cannot work well when the order of input is disarranged.In this paper,a novel 3D graph convolution-based residual network,GCR-Net,is proposed,which can obtain a robust and accurate reconstruction result from the photon intensity of the surface.Additionally,it is proved that the network is insensitive to the order of input.The performance of this method was evaluated with numerical simulations and in vivo experiments.The results demonstrated that compared with the existing methods,the proposed method can achieve efficient and accurate reconstruction in localization and shape recovery by utilizing threedimensional information.展开更多
Brown adipose tissue(BAT)is a kind of adipose tissue engaging in thermoregulatory thermogenesis,metaboloregulatory thermogenesis,and secretory.Current studies have revealed that BAT activity is negatively correlated w...Brown adipose tissue(BAT)is a kind of adipose tissue engaging in thermoregulatory thermogenesis,metaboloregulatory thermogenesis,and secretory.Current studies have revealed that BAT activity is negatively correlated with adult body weight and is considered a target tissue for the treatment of obesity and other metabolic-related diseases.Additionally,the activity of BAT presents certain differences between different ages and genders.Clinically,BAT segmentation based on PET/CT data is a reliable method for brown fat research.However,most of the current BAT segmentation methods rely on the experience of doctors.In this paper,an improved U-net network,ICA-Unet,is proposed to achieve automatic and precise segmentation of BAT.First,the traditional 2D convolution layer in the encoder is replaced with a depth-wise overparameterized convolutional(Do-Conv)layer.Second,the channel attention block is introduced between the double-layer convolution.Finally,the image information entropy(IIE)block is added in the skip connections to strengthen the edge features.Furthermore,the performance of this method is evaluated on the dataset of PET/CT images from 368 patients.The results demonstrate a strong agreement between the automatic segmentation of BAT and manual annotation by experts.The average DICE coeffcient(DSC)is 0.9057,and the average Hausdorff distance is 7.2810.Experimental results suggest that the method proposed in this paper can achieve effcient and accurate automatic BAT segmentation and satisfy the clinical requirements of BAT.展开更多
基金the Program of the National Natural Science Foundation of China under Grant Nos.61701403,61601363,11571012,61372046 and 61640418the Natural Science Basic Research Plan in Shaanxi Province of China under Grant Nos.2017JQ6006 and 2017JQ6017.
文摘With widely availed clinically used radionuclides,Cer enkov luminescence imaging(CLI)has become a potential tool in the field of optical molecular imaging.However,the impulse noises introduced by high-energy gamma rays that are generated during the decay of radionuclide reduce the image quality significantly,which affects the acauracy of quantitative analysis,as well as the three dimensional reconstruction.In this work,a novel denoising framework based on fuzzy dlustering and curvat ure driven difusion(CDD)is proposed to remove this kind of impulse noises.To improve the accuracy,the F u1zzy Local Information C-Means algorithm,where spatial information is evolved,is used.We evaluate the per formance of the proposed framework sys-tematically with a series of experiments,and the corresponding results demonstrate a better denoising effect than those from the commonly used median filter method.We hope this work may provide a useful data pre processing tool for CLI and its following studies.
基金the School of Life Science and Technology of Xidian University for providing experimental data acquisition system.This work was supported by the National Natural Science Foundation of China under Grant(Nos.61372046,61401264,11571012,61601363,61640418,61572400)the Science and Technology Plan Program in Shaanxi Province of China under Grant(Nos.2013K12-20-12,2015KW-002)+2 种基金the Natural Science Research Plan Program in Shaanxi Province of China under Grant(No.2015JM6322)the Scienti¯c Research Founded by Shaanxi Provincial Education Department under Grant No.16JK1772the Scienti¯c Research Foundation of Northwest University under Grant Nos.338050018 and 338020012.
文摘As an emerging molecular imaging modality,cone-beam X-ray luminescence computed tomog-raphy(CB-XLCT)uses X-ray-excitable probes to produce near-infrared(NIR)luminescence and then reconst ructs three-dimensional(3D)distribution of the probes from surface measurements.A proper photon-transportation model is critical to accuracy of XLCT.Here,we presented a systematic comparison between the common-used Monte Carlo model and simplified spherical harmonics(SPN).The performance of the two methods was evaluated over several main spec-trums using a known XLCT material.We designed both a global measurement based on the cosine similarity and a locally-averaged relative error,to quantitatively assess these methods.The results show that the SP_(3) could reach a good balance between the modeling accuracy and computational efficiency for all of the tested emission spectrums.Besides,the SP_(1)(which is equivalent to the difusion equation(DE))can be a reasonable alternative model for emission wavelength over 692nm.In vivo experiment further demonstrates the reconstruction perfor-mance of the SP:and DE.This study would provide a valuable guidance for modeling the photon-transportation in CB-XLCT.
基金supported by the National Natural Science Foundation of China under Grant Nos.81571725 and 81230033.
文摘Monte Carlo simulation of light propagation in turbid medium has been studied for years.A number of software packages have been developed to handle with such issue.However,it is hard to compare these simulation packages,especially for tissues with complex heterogeneous structures.Here,we first designed a group of mesh datasets generated by Iso2Mesh software,and used them to cross-validate the accuracy and to evaluate the performance of four Monte Carlo-based simulation packages,including Monte Carlo model of steady-state light transport in multi-layered tissues(MCML),tetrahedron-based inhomogeneous Monte Carlo optical simulator(TIMOS),Molecular Optical Simulation Environment(MOSE),and Mesh-based Monte Carlo(MMC).The performance of each package was evaluated based on the designed mesh datasets.The merits and demerits of each package were also discussed.Comparative results showed that the TIMOS package provided the best performance,which proved to be a reliable,efficient,and stable MC simulation package for users.
基金supported by the National Natural Science Foundation of China(Grant No.61372046)the Research Fund for the Doctoral Program ofHigher Education of China(New Teachers)(Grant No.20116101120018)+4 种基金the China Postdoctoral Sci-ence_Foundation_Funded Project(Grant_Nos.2011M501467 and 2012T50814)the Natural Sci-ence Basic Research Plan in Shaanxi Province of China(Grant No.2011JQ1006)the Fund amental Research Funds for the Central Universities(Grant No.GK201302007)Science and Technology Plan Program in Shaanxi Province of China(Grant Nos.2012 KJXX-29 and 2013K12-20-12)the Scienceand Technology Plan Program in Xi'an of China(Grant No.CXY 1348(2)).
文摘Fluorescence molecular tomography(FMT)is a fast-developing optical imaging modalitythat has great potential in early diagnosis of disease and drugs development.However,recon-struction algorithms have to address a highly ill-posed problem to fulfll 3D reconstruction inFMT.In this contribution,we propose an efficient iterative algorithm to solve the large-scalereconstruction problem,in which the sparsity of fluorescent targets is taken as useful a prioriinformation in designing the reconstruction algorithm.In the implementation,a fast sparseapproximation scheme combined with a stage-wise learning strategy enable the algorithm to dealwith the ill-posed inverse problem at reduced computational costs.We validate the proposed fastiterative method with numerical simulation on a digital mouse model.Experimental results demonstrate that our method is robust for different finite element meshes and different Poissonnoise levels.
基金funded by the National Natural Science Foundation of China under Grants Nos.11871321,61901374,61906154,and 61971350Postdoctoral Innovative Talents Support Program under Grants No.BX20180254.
文摘Bioluminescence tomography(BLT)is a promising imaging modality that can provide noninvasive three-dimensional visualization information on tumor distribution.In BLT reconstruction,the widely used methods based on regularization or greedy strategy face problems such as over-sparsity,over-smoothing,spatial discontinuity,poor robustness,and poor multi-target resolution.To deal with these problems,combining the advantages of the greedy strategies as well as regularization methods,we propose a hybrid reconstruction framework for model-based multispectral BLT using the support set of a greedy strategy as a feasible region and the Alpha-divergence to combine the weighted solutions obtained by L1-norm and L2-norm regularization methods.In numerical simulations with digital mouse and in vivo experiments,the results show that the proposed framework has better localization accuracy,spatial resolution,and multi-target resolution.
基金National Key Research and Development Program of China (2019YFC1521102)National Natural Science Foundation of China (61701403,61806164,62101439,61906154)+4 种基金China Postdoctoral Science Foundation (2018M643719)Natural Science Foundation of Shaanxi Province (2020JQ-601)Young Talent Support Program of the Shaanxi Association for Science and Technology (20190107)Key Research and Development Program of Shaanxi Province (2019GY-215,2021ZDLSF06-04)Major research and development project of Qinghai (2020-SF-143).
文摘Cerenkov Luminescence Tomography(CLT)is a novel and potential imaging modality which can display the three-dimensional distribution of radioactive probes.However,due to severe ill-posed inverse problem,obtaining accurate reconstruction results is still a challenge for traditional model-based methods.The recently emerged deep learning-based methods can directly learn the mapping relation between the surface photon intensity and the distribution of the radioactive source,which effectively improves the performance of CLT reconstruction.However,the previously proposed deep learning-based methods cannot work well when the order of input is disarranged.In this paper,a novel 3D graph convolution-based residual network,GCR-Net,is proposed,which can obtain a robust and accurate reconstruction result from the photon intensity of the surface.Additionally,it is proved that the network is insensitive to the order of input.The performance of this method was evaluated with numerical simulations and in vivo experiments.The results demonstrated that compared with the existing methods,the proposed method can achieve efficient and accurate reconstruction in localization and shape recovery by utilizing threedimensional information.
基金supported in part by the National Natural Science Foundation of China(61701403,82122033,81871379)National Key Research and Development Program of China(2016YFC0103804,2019YFC1521103,2020YFC1523301,2019YFC-1521102)+3 种基金Key R&D Projects in Shaanxi Province(2019ZDLSF07-02,2019ZDLGY10-01)Key R&D Projects in Qinghai Province(2020-SF-143)China Post-doctoral Science Foundation(2018M643719)Young Talent Support Program of the Shaanxi Association for Science and Technology(20190107).
文摘Brown adipose tissue(BAT)is a kind of adipose tissue engaging in thermoregulatory thermogenesis,metaboloregulatory thermogenesis,and secretory.Current studies have revealed that BAT activity is negatively correlated with adult body weight and is considered a target tissue for the treatment of obesity and other metabolic-related diseases.Additionally,the activity of BAT presents certain differences between different ages and genders.Clinically,BAT segmentation based on PET/CT data is a reliable method for brown fat research.However,most of the current BAT segmentation methods rely on the experience of doctors.In this paper,an improved U-net network,ICA-Unet,is proposed to achieve automatic and precise segmentation of BAT.First,the traditional 2D convolution layer in the encoder is replaced with a depth-wise overparameterized convolutional(Do-Conv)layer.Second,the channel attention block is introduced between the double-layer convolution.Finally,the image information entropy(IIE)block is added in the skip connections to strengthen the edge features.Furthermore,the performance of this method is evaluated on the dataset of PET/CT images from 368 patients.The results demonstrate a strong agreement between the automatic segmentation of BAT and manual annotation by experts.The average DICE coeffcient(DSC)is 0.9057,and the average Hausdorff distance is 7.2810.Experimental results suggest that the method proposed in this paper can achieve effcient and accurate automatic BAT segmentation and satisfy the clinical requirements of BAT.