As a crucial component of terrestrial ecosystems,urban forests play a pivotal role in protecting urban biodiversity by providing suitable habitats for acoustic spaces.Previous studies note that vegetation structure is...As a crucial component of terrestrial ecosystems,urban forests play a pivotal role in protecting urban biodiversity by providing suitable habitats for acoustic spaces.Previous studies note that vegetation structure is a key factor influencing bird sounds in urban forests;hence,adjusting the frequency composition may be a strategy for birds to avoid anthropogenic noise to mask their songs.However,it is unknown whether the response mechanisms of bird vocalizations to vegetation structure remain consistent despite being impacted by anthropogenic noise.It was hypothesized that anthropogenic noise in urban forests occupies the low-frequency space of bird songs,leading to a possible reshaping of the acoustic niches of forests,and the vegetation structure of urban forests is the critical factor that shapes the acoustic space for bird vocalization.Passive acoustic monitoring in various urban forests was used to monitor natural and anthropogenic noises,and sounds were classified into three acoustic scenes(bird sounds,human sounds,and bird-human sounds)to determine interconnections between bird sounds,anthropogenic noise,and vegetation structure.Anthropogenic noise altered the acoustic niche of urban forests by intruding into the low-frequency space used by birds,and vegetation structures related to volume(trunk volume and branch volume)and density(number of branches and leaf area index)significantly impact the diversity of bird sounds.Our findings indicate that the response to low and high frequency signals to vegetation structure is distinct.By clarifying this relationship,our results contribute to understanding of how vegetation structure influences bird sounds in urban forests impacted by anthropogenic noise.展开更多
In this paper,joint location and velocity estimation(JLVE)of vehicular terminals for 6G integrated communication and sensing(ICAS)is studied.We aim to provide a unified performance analysis framework for ICAS-based JL...In this paper,joint location and velocity estimation(JLVE)of vehicular terminals for 6G integrated communication and sensing(ICAS)is studied.We aim to provide a unified performance analysis framework for ICAS-based JLVE,which is challenging due to random fading,multipath interference,and complexly coupled system models,and thus the impact of channel fading and multipath interference on JLVE performance is not fully understood.To address this challenge,we exploit structured information models of the JLVE problem to render tractable performance quantification.Firstly,an individual closedform Cramer-Rao lower bound for vehicular localization,velocity detection and channel estimation,respectively,is established for gaining insights into performance limits of ICAS-based JLVE.Secondly,the impact of system resource factors and fading environments,e.g.,system bandwidth,the number of subcarriers,carrier frequency,antenna array size,transmission distance,spatial channel correlation,channel covariance,the number of interference paths and noise power,on the JLVE performance is theoretically analyzed.The associated closed-form JLVE performance analysis can not only provide theoretical foundations for ICAS receiver design but also provide a perfor mance benchmark for various JLVE methods。展开更多
The deployment of multiple intelligent reflecting surfaces(IRSs)in blockage-prone millimeter wave(mmWave)communication networks have garnered considerable attention lately.Despite the remarkably low circuit power cons...The deployment of multiple intelligent reflecting surfaces(IRSs)in blockage-prone millimeter wave(mmWave)communication networks have garnered considerable attention lately.Despite the remarkably low circuit power consumption per IRS element,the aggregate energy consumption becomes substantial if all elements of an IRS are turned on given a considerable number of IRSs,resulting in lower overall energy efficiency(EE).To tackle this challenge,we propose a flexible and efficient approach that individually controls the status of each IRS element.Specifically,the network EE is maximized by jointly optimizing the associations of base stations(BSs)and user equipments(UEs),transmit beamforming,phase shifts of IRS elements,and the associations of individual IRS elements and UEs.The problem is efficiently addressed in two phases.First,the Gale-Shapley algorithm is applied for BS-UE association,followed by a block coordinate descent-based algorithm that iteratively solves the subproblems related to active beamforming,phase shifts,and element-UE associations.To reduce the tremendous dimensionality of optimization variables introduced by element-UE associations in large-scale IRS networks,we introduce an efficient algorithm to solve the associations between IRS elements and UEs.Numerical results show that the proposed elementwise control scheme improves EE by 34.24% compared to the network with IRS-all-on scheme.展开更多
Precise localization techniques for indoor Wi-Fi access points(APs)have important application in the security inspection.However,due to the interference of environment factors such as multipath propagation and NLOS(No...Precise localization techniques for indoor Wi-Fi access points(APs)have important application in the security inspection.However,due to the interference of environment factors such as multipath propagation and NLOS(Non-Line-of-Sight),the existing methods for localization indoor Wi-Fi access points based on RSS ranging tend to have lower accuracy as the RSS(Received Signal Strength)is difficult to accurately measure.Therefore,the localization algorithm of indoor Wi-Fi access points based on the signal strength relative relationship and region division is proposed in this paper.The algorithm hierarchically divide the room where the target Wi-Fi AP is located,on the region division line,a modified signal collection device is used to measure RSS in two directions of each reference point.All RSS values are compared and the region where the RSS value has the relative largest signal strength is located as next candidate region.The location coordinate of the target Wi-Fi AP is obtained when the localization region of the target Wi-Fi AP is successively approximated until the candidate region is smaller than the accuracy threshold.There are 360 experiments carried out in this paper with 8 types of Wi-Fi APs including fixed APs and portable APs.The experimental results show that the average localization error of the proposed localization algorithm is 0.30 meters,and the minimum localization error is 0.16 meters,which is significantly higher than the localization accuracy of the existing typical indoor Wi-Fi access point localization methods.展开更多
The passive optical network(PON)technology has been drastically improved in recent years.In spite of using the optical technology,the utilization of the entire bandwidth is a very challenging task.The main categories ...The passive optical network(PON)technology has been drastically improved in recent years.In spite of using the optical technology,the utilization of the entire bandwidth is a very challenging task.The main categories of PON are the Ethernet passive optical network(EPON)and gigabit passive optical network(GPON).These two networks use the dynamic bandwidth allocation(DBA)algorithm to attain the maximum usage of bandwidth,which is provided in the network dynamically according to the need of the customers with the support of the service level agreement(SLA).This paper will provide a clear review about the DBA algorithm of both technologies as well as the comparison。展开更多
With the rapidly growing abuse of drones, monitoring and classification of birds and drones have become a crucial safety issue. With similar low radar cross sections(RCSs), velocities, and heights, drones are usually ...With the rapidly growing abuse of drones, monitoring and classification of birds and drones have become a crucial safety issue. With similar low radar cross sections(RCSs), velocities, and heights, drones are usually difficult to be distinguished from birds in radar measurements. In this paper, we propose to exploit different periodical motions of birds and drones from highresolution Doppler spectrum sequences(DSSs) for classification.This paper presents an elaborate feature vector representing the periodic fluctuations of RCS and micro kinematics. Fed by the Doppler spectrum and feature sequence, the long to short-time memory(LSTM) is used to solve the time series classification.Different classification schemes to exploit the Doppler spectrum series are validated and compared by extensive real-data experiments, which confirms the effectiveness and superiorities of the proposed algorithm.展开更多
Spectral efficiency(SE) and energy efficiency(EE) in secure communications is of primary importance due to the fact that 5 G wireless networks aim to achieve high throughput,low power consumption and high level of sec...Spectral efficiency(SE) and energy efficiency(EE) in secure communications is of primary importance due to the fact that 5 G wireless networks aim to achieve high throughput,low power consumption and high level of security.Nevertheless,maximizing SE and EE are not achievable simultaneously.In this paper,we investigate the SE and EE tradeoff for secure transmission in cognitive relay networks where all nodes are randomly distributed.We first introduce the opportunistic relay selection policy,where each primary transmitter communicates with the primary receiver with the help of a secondary user as a relay.Then,we evaluate the secure SE and secure EE of the primary network based on the outage probabilities analysis.Thirdly,by applying a unified SE-EE tradeoff metric,the secure SE and EE tradeoff problem is formulated as the joint secure SE and EE maximization problem.Considering the non-concave feature of the objective function,an iterative algorithm is proposed to improve secure SE and EE tradeoff.Numerical results show that the opportunistic relay selection policy is always superior to random relay selection policy.Furthermore,the opportunistic relay selection policy outperforms conventional direct transmission policy when faced with small security threat(i.e.,for smaller eavesdropper density).展开更多
Internet of Things (IoT) has emerged as one of the new use cases in the 5th Generation wireless networks. However, the transient nature of the data generated in IoT networks brings great challenges for content caching...Internet of Things (IoT) has emerged as one of the new use cases in the 5th Generation wireless networks. However, the transient nature of the data generated in IoT networks brings great challenges for content caching. In this paper, we study a joint content caching and updating strategy in IoT networks, taking both the energy consumption of the sensors and the freshness loss of the contents into account. In particular, we decide whether or not to cache the transient data and, if so, how often the servers should update their contents. We formulate this content caching and updating problem as a mixed 0–1 integer non-convex optimization programming, and devise a Harmony Search based content Caching and Updating (HSCU) algorithm, which is self-learning and derivativefree and hence stipulates no requirement on the relationship between the objective and variables. Finally, extensive simulation results verify the effectiveness of our proposed algorithm in terms of the achieved satisfaction ratio for content delivery, normalized energy consumption, and overall network utility, by comparing it with some baseline algorithms.展开更多
In this paper,an integrated substrate gap waveguide(ISGW)filtering antenna is proposed at millimeter wave band,whose surface wave and spurious modes are simultaneously suppressed.A secondorder filtering response is ob...In this paper,an integrated substrate gap waveguide(ISGW)filtering antenna is proposed at millimeter wave band,whose surface wave and spurious modes are simultaneously suppressed.A secondorder filtering response is obtained through a coupling feeding scheme using one uniform impedance resonator(UIR)and two stepped-impedance resonators(SIRs).To increase the stopband width of the antenna,the spurious modes are suppressed by selecting the appropriate sizes of the ISGW unit cell.Furthermore,the ISGW is implemented to improve the radiation performance of the antenna by alleviating the propagation of surface wave.And an equivalent circuit is investigated to reveal the working principle of ISGW.To demonstrate this methodology,an ISGW filtering antenna operating at a center frequency of 25 GHz is designed,fabricated,and measured.The results show that the antenna achieves a stopband width of 1.6f0(center frequency),an out-of-band suppression level of 21 dB,and a peak realized gain of 8.5 dBi.展开更多
A novel dual-band ISGW cavity filter with enhanced frequency selectivity is proposed in this paper by utilizing a multi-mode coupling topology.Its cavity is designed to control the number of modes,and then the ports a...A novel dual-band ISGW cavity filter with enhanced frequency selectivity is proposed in this paper by utilizing a multi-mode coupling topology.Its cavity is designed to control the number of modes,and then the ports are determined by analyzing the coupling relationship between these selected modes.By synthesizing the coupling matrix of the filter,a nonresonating node(NRN)structure is introduced to flexibly tune the frequency of modes,which gets a dualband and quad-band filtering response from a tri-band filter no the NRN.Furthermore,a frequency selective surface(FSS)has been newly designed as the upper surface of the cavity,which significantly improves the bad out-of-band suppression and frequency selectivity that often exists in most traditional cavity filter designs and measurements.The results show that its two center frequencies are f01=27.50 GHz and f02=32.92GHz,respectively.Compared with the dual-band filter that there is no the FSS metasurface,the out-of-band suppression level is improved from measured 5 dB to18 dB,and its finite transmission zero(FTZ)numbers is increased from measured 1 to 4 between the two designed bands.Compared with the tri-band and quadband filter,its passband bandwidth is expanded from measured 1.17%,1.14%,and 1.13% or 1.31%,1.50%,0.56%,and 0.57% to 1.71% and 1.87%.In addition,the filter has compact,small,and lightweight characteristics.展开更多
In recent times,various power control and clustering approaches have been proposed to enhance overall performance for cell-free massive multipleinput multiple-output(CF-mMIMO)networks.With the emergence of deep reinfo...In recent times,various power control and clustering approaches have been proposed to enhance overall performance for cell-free massive multipleinput multiple-output(CF-mMIMO)networks.With the emergence of deep reinforcement learning(DRL),significant progress has been made in the field of network optimization as DRL holds great promise for improving network performance and efficiency.In this work,our focus delves into the intricate challenge of joint cooperation clustering and downlink power control within CF-mMIMO networks.Leveraging the potent deep deterministic policy gradient(DDPG)algorithm,our objective is to maximize the proportional fairness(PF)for user rates,thereby aiming to achieve optimal network performance and resource utilization.Moreover,we harness the concept of“divide and conquer”strategy,introducing two innovative methods termed alternating DDPG(A-DDPG)and hierarchical DDPG(H-DDPG).These approaches aim to decompose the intricate joint optimization problem into more manageable sub-problems,thereby facilitating a more efficient resolution process.Our findings unequivo-cally showcase the superior efficacy of our proposed DDPG approach over the baseline schemes in both clustering and downlink power control.Furthermore,the A-DDPG and H-DDPG obtain higher performance gain than DDPG with lower computational complexity.展开更多
Recently,deep learning-based semantic communication has garnered widespread attention,with numerous systems designed for transmitting diverse data sources,including text,image,and speech,etc.While efforts have been di...Recently,deep learning-based semantic communication has garnered widespread attention,with numerous systems designed for transmitting diverse data sources,including text,image,and speech,etc.While efforts have been directed toward improving system performance,many studies have concentrated on enhancing the structure of the encoder and decoder.However,this often overlooks the resulting increase in model complexity,imposing additional storage and computational burdens on smart devices.Furthermore,existing work tends to prioritize explicit semantics,neglecting the potential of implicit semantics.This paper aims to easily and effectively enhance the receiver's decoding capability without modifying the encoder and decoder structures.We propose a novel semantic communication system with variational neural inference for text transmission.Specifically,we introduce a simple but effective variational neural inferer at the receiver to infer the latent semantic information within the received text.This information is then utilized to assist in the decoding process.The simulation results show a significant enhancement in system performance and improved robustness.展开更多
The path-following control design for an autonomous underwater vehicle(AUV)requires prior full or partial knowledge about the mathematical model defined through Newton’s second law based on a geometrical investigatio...The path-following control design for an autonomous underwater vehicle(AUV)requires prior full or partial knowledge about the mathematical model defined through Newton’s second law based on a geometrical investigation.AUV dynamics are highly nonlinear and time-varying,facing unpredictable disturbances due to AUVs operating in deep,hazardous oceanic environments.Consequently,navigation guidance and control systems for AUVs must learn and adapt to the time-varying dynamics of the nonlinear fully coupled vehicle model in the presence of highly unstructured underwater operating conditions.Many control engineers focus on the application of robust model-free adaptive control techniques in AUV maneuvers.Hence,the main goal is to design a novel salp swarm optimization of super twisting algorithm-based secondorder sliding mode controller for the planar path-following control of an AUV through regulation of the heading angle parameter.The finite time for tracking error convergence in the horizontal plane is provided through the control structure architecture,particularly for lateral deviations from the desired path.The proposed control law is designed such that it steers a robotic vehicle to track a predefined planar path at a constant speed determined by an end-user,without any temporal specification.Finally,the efficacy and tracking accuracy are evaluated through comparative analysis based on simulation and experimental hardware-in-loop assessment without violating the input constraints.Moreover,the proposed control law can handle parametric uncertainties and unpredictable disturbances such as ocean currents,wind,and measurement noise.展开更多
The development of artificial intelligence(AI)technologies creates a great chance for the iteration of railway monitoring.This paper proposes a comprehensive method for railway utility pole detection.The framework of ...The development of artificial intelligence(AI)technologies creates a great chance for the iteration of railway monitoring.This paper proposes a comprehensive method for railway utility pole detection.The framework of this paper on railway systems consists of two parts:point cloud preprocessing and railway utility pole detection.Thismethod overcomes the challenges of dynamic environment adaptability,reliance on lighting conditions,sensitivity to weather and environmental conditions,and visual occlusion issues present in 2D images and videos,which utilize mobile LiDAR(Laser Radar)acquisition devices to obtain point cloud data.Due to factors such as acquisition equipment and environmental conditions,there is a significant amount of noise interference in the point cloud data,affecting subsequent detection tasks.We designed a Dual-Region Adaptive Point Cloud Preprocessing method,which divides the railway point cloud data into track and non-track regions.The track region undergoes projection dimensionality reduction,with the projected results being unique and subsequently subjected to 2D density clustering,greatly reducing data computation volume.The non-track region undergoes PCA-based dimensionality reduction and clustering operations to achieve preprocessing of large-scale point cloud scenes.Finally,the preprocessed results are used for training,achieving higher accuracy in utility pole detection and data communication.Experimental results show that our proposed preprocessing method not only improves efficiency but also enhances detection accuracy.展开更多
Separated transmit and receive antennas are employed to improve transmit-receive isolation in conventional short-range radars, which greatly increases the antenna size and misaligns of the transmit/receive radiation p...Separated transmit and receive antennas are employed to improve transmit-receive isolation in conventional short-range radars, which greatly increases the antenna size and misaligns of the transmit/receive radiation patterns. In this paper,a dual circularly polarized(CP) monostatic simultaneous transmit and receive(MSTAR) antenna with enhanced isolation is proposed to alleviate the problem. The proposed antenna consists of one sequentially rotating array(SRA), two beamforming networks(BFN), and a combined decoupling structure. The SRA is shared by the transmit and receive to reduce the size of the antenna and to obtain a consistent transmit and receive pattern.The BFN achieve right-hand CP for transmit and left-hand CP for receive. By exploring the combined decoupling structure of uniplanar compact electromagnetic band gap(UC-EBG) and ringshaped defected ground structure(RS-DGS), good transmitreceive isolation is achieved. The proposed antenna prototype is fabricated and experimentally characterized. The simulated and measured results show good agreement. The demonstrate transmit/receive isolation is height than 33 dB, voltage standing wave ratio is lower than 2, axial ratio is lower than 3 dB, and consistent radiation for both transmit and receive is within4.25-4.35 GHz.展开更多
The simultaneously transmitting and reflecting reconfigurable intelligent surface(STAR-RIS)is regarded as a promising paradigm for enhancing the connectivity and reliability of non-orthogonal multiple access(NOMA)netw...The simultaneously transmitting and reflecting reconfigurable intelligent surface(STAR-RIS)is regarded as a promising paradigm for enhancing the connectivity and reliability of non-orthogonal multiple access(NOMA)networks.However,the transmission of STAR-RIS enhanced NOMA networks performance is severely limited due to the inter-user interference(IUI)on multi-user detections.To mitigate this drawback,we propose a generalized quadrature spatial modulation(GQSM)aided STAR-RIS in conjunction with the NOMA scheme,termed STARRIS-NOMA-GQSM,to improve the performance of the corresponding NGMA network.By STAR-RISNOMA-GQSM,the information bits for all users in transmission and reflection zones are transmitted via orthogonal signal domains to eliminate the IUI so as to greatly improve the system performance.The lowcomplexity detection and upper-bounded bit error rate(BER)of STAR-RIS-NOMA-GQSM are both studied to evaluate its feasibility and performance.Moreover,by further utilizing index modulation(IM),we propose an enhanced STAR-RIS-NOMA-GQSM scheme,termed E-STAR-RIS-NOMA-GQSM,to enhance the transmission rate by dynamically adjusting reflection patterns in both transmission and reflection zones.Simulation results show that the proposed original and enhanced scheme significantly outperform the conventional STAR-RIS-NOMA and also confirm the precision of the theoretical analysis of the upper-bounded BER.展开更多
To avoid the complicated motion compensation in interferometric inverse synthetic aperture(InISAR)and achieve realtime three-dimensional(3 D)imaging,a novel approach for 3 D imaging of the target only using a single e...To avoid the complicated motion compensation in interferometric inverse synthetic aperture(InISAR)and achieve realtime three-dimensional(3 D)imaging,a novel approach for 3 D imaging of the target only using a single echo is presented.This method is based on an isolated scatterer model assumption,thus the scatterers in the beam can be extracted individually.The radial range of each scatterer is estimated by the maximal likelihood estimation.Then,the horizontal and vertical wave path difference is derived by using the phase comparison technology for each scatterer,respectively.Finally,by utilizing the relationship among the 3 D coordinates,the radial range,the horizontal and vertical wave path difference,the 3 D image of the target can be reconstructed.The reconstructed image is free from the limitation in InISAR that the image plane depends on the target's own motions and on its relative position with respect to the radar.Furthermore,a phase ambiguity resolution method is adopted to ensure the success of the 3 D imaging when phase ambiguity occurs.It can be noted that the proposed phase ambiguity resolution method only uses one antenna pair and does not require a priori knowledge,whereas the existing phase ambiguity methods may require two or more antenna pairs or a priori knowledge for phase unwarping.To evaluate the performance of the proposed method,the theoretical analyses on estimation accuracy are presented and the simulations in various scenarios are also carried out.展开更多
In the Internet of vehicles(IoV),direct communication between vehicles,i.e.,vehicle-tovehicle(V2V)may have lower latency,compared to the schemes with help of Road Side Unit(RSU)or base station.In this paper,the scenar...In the Internet of vehicles(IoV),direct communication between vehicles,i.e.,vehicle-tovehicle(V2V)may have lower latency,compared to the schemes with help of Road Side Unit(RSU)or base station.In this paper,the scenario where the demands of a vehicle are satisfied by cooperative transmissions from those one in front is considered.Since the topology of the vehicle network is dynamic,random linear network coding is applied in such a multisource single-sink vehicle-to-vehicle network,where each vehicle is assumed to broadcast messages to others so that the intermediate vehicles between sources and sink can reduce the latency collaboratively.It is shown that the coding scheme can significantly reduce the time delay compared with the non-coding scheme even in the channels with high packet loss rate.In order to further optimize the coding scheme,one can increase the generation size,where the generation size means the number of raw data packets sent by the source node to the sink node in each round of communication.Under the premise of satisfying the coding validity,we can dynamically select the Galois field size according to the number of intermediate nodes.It is not surprised that the reduction in the Galois field size can further reduce the transmission latency.展开更多
Gaofen-3(GF-3),a Chinese civil synthetic aperture radar(SAR)at C-band,has operated since August 2016.Remarkably,several typhoons have been captured by GF-3 around the China Seas over its last two-year mission.In this ...Gaofen-3(GF-3),a Chinese civil synthetic aperture radar(SAR)at C-band,has operated since August 2016.Remarkably,several typhoons have been captured by GF-3 around the China Seas over its last two-year mission.In this study,six images acquired in Global Observation(GLO)and Wide ScanSAR(WSC)modes at verticalvertical(VV)polarization channel are discussed.This work focuses on investigating the observation of rainfall using GF-3 SAR.These images were collocated with winds from the European Centre for Medium-Range Weather Forecasts(ECMWF),significant wave height simulated from the WAVEWATCH-III(WW3)model,sea surface currents from climate forecast system version 2(CFSv2)of the National Centers for Environmental Prediction(NCEP)and rain rate data from the Tropical Rainfall Measuring Mission(TRMM)satellite.Sea surface roughness,was compared with the normalized radar cross section(NRCS)from SAR observations,and indicated a 0.8 correlation(COR).We analyzed the dependences of the difference between model-simulated NRCS and SARmeasured NRCS on the TRMM rain rate and WW3-simulated significant wave height.It was found that the effects of rain on SAR damps the radar signal at incidence angles ranging from 15°to 30°,while it enhances the radar signal at incidence angles ranging from 30°to 45°and incidence angles smaller than 10°.This behavior is consistent with previous studies and an algorithm for rain rate retrieval is anticipated for GF-3 SAR.展开更多
The number of films is numerous and the film contents are complex over the Internet and multimedia sources. It is time consuming for a viewer to select a favorite film. This paper presents an automatic recognition sys...The number of films is numerous and the film contents are complex over the Internet and multimedia sources. It is time consuming for a viewer to select a favorite film. This paper presents an automatic recognition system of film types. Initially, a film is firstly sampled as frame sequences. The color space, including hue, saturation,and brightness value(HSV), is analyzed for each sampled frame by computing the deviation and mean of HSV for each film. These features are utilized as inputs to a deep-learning neural network(DNN) for the recognition of film types. One hundred films are utilized to train and validate the model parameters of DNN. In the testing phase, a film is recognized as one of the five categories, including action, comedy, horror thriller, romance, and science fiction, by the trained DNN. The experimental results reveal that the film types can be effectively recognized by the proposed approach, enabling the viewer to select an interesting film accurately and quickly.展开更多
基金the National Natural Science Foundation of China(32201338)Science Technology Program from the Forestry Administration of Guangdong Province(2021KJCX017)+1 种基金Guangzhou Municipal Science and Technology Bureau Program(2023A04J0086)Shenzhen Key Laboratory of Southern Subtropical Plant Diversity。
文摘As a crucial component of terrestrial ecosystems,urban forests play a pivotal role in protecting urban biodiversity by providing suitable habitats for acoustic spaces.Previous studies note that vegetation structure is a key factor influencing bird sounds in urban forests;hence,adjusting the frequency composition may be a strategy for birds to avoid anthropogenic noise to mask their songs.However,it is unknown whether the response mechanisms of bird vocalizations to vegetation structure remain consistent despite being impacted by anthropogenic noise.It was hypothesized that anthropogenic noise in urban forests occupies the low-frequency space of bird songs,leading to a possible reshaping of the acoustic niches of forests,and the vegetation structure of urban forests is the critical factor that shapes the acoustic space for bird vocalization.Passive acoustic monitoring in various urban forests was used to monitor natural and anthropogenic noises,and sounds were classified into three acoustic scenes(bird sounds,human sounds,and bird-human sounds)to determine interconnections between bird sounds,anthropogenic noise,and vegetation structure.Anthropogenic noise altered the acoustic niche of urban forests by intruding into the low-frequency space used by birds,and vegetation structures related to volume(trunk volume and branch volume)and density(number of branches and leaf area index)significantly impact the diversity of bird sounds.Our findings indicate that the response to low and high frequency signals to vegetation structure is distinct.By clarifying this relationship,our results contribute to understanding of how vegetation structure influences bird sounds in urban forests impacted by anthropogenic noise.
基金supported by the National Natural Science Foundation of China under 62001526by Natural Science Foundation of Guangdong Province under 2021A1515012021+2 种基金by National Key R&D Plan of China under Grant 2021YFB2900200partly by Major Talent Program of Guangdong Province under Grant 2021QN02X074by Fundamental Research Funds for the Central Universities, Sun Yat-sen University, under Grant 23QNPY22
文摘In this paper,joint location and velocity estimation(JLVE)of vehicular terminals for 6G integrated communication and sensing(ICAS)is studied.We aim to provide a unified performance analysis framework for ICAS-based JLVE,which is challenging due to random fading,multipath interference,and complexly coupled system models,and thus the impact of channel fading and multipath interference on JLVE performance is not fully understood.To address this challenge,we exploit structured information models of the JLVE problem to render tractable performance quantification.Firstly,an individual closedform Cramer-Rao lower bound for vehicular localization,velocity detection and channel estimation,respectively,is established for gaining insights into performance limits of ICAS-based JLVE.Secondly,the impact of system resource factors and fading environments,e.g.,system bandwidth,the number of subcarriers,carrier frequency,antenna array size,transmission distance,spatial channel correlation,channel covariance,the number of interference paths and noise power,on the JLVE performance is theoretically analyzed.The associated closed-form JLVE performance analysis can not only provide theoretical foundations for ICAS receiver design but also provide a perfor mance benchmark for various JLVE methods。
基金supported by the National Natural Science Foundation of China under grant U22A2003 and 62271515Shenzhen Science and Technology Program under grant ZDSYS20210623091807023supported by the National Natural Science Foundation of China under Grant 62301300.
文摘The deployment of multiple intelligent reflecting surfaces(IRSs)in blockage-prone millimeter wave(mmWave)communication networks have garnered considerable attention lately.Despite the remarkably low circuit power consumption per IRS element,the aggregate energy consumption becomes substantial if all elements of an IRS are turned on given a considerable number of IRSs,resulting in lower overall energy efficiency(EE).To tackle this challenge,we propose a flexible and efficient approach that individually controls the status of each IRS element.Specifically,the network EE is maximized by jointly optimizing the associations of base stations(BSs)and user equipments(UEs),transmit beamforming,phase shifts of IRS elements,and the associations of individual IRS elements and UEs.The problem is efficiently addressed in two phases.First,the Gale-Shapley algorithm is applied for BS-UE association,followed by a block coordinate descent-based algorithm that iteratively solves the subproblems related to active beamforming,phase shifts,and element-UE associations.To reduce the tremendous dimensionality of optimization variables introduced by element-UE associations in large-scale IRS networks,we introduce an efficient algorithm to solve the associations between IRS elements and UEs.Numerical results show that the proposed elementwise control scheme improves EE by 34.24% compared to the network with IRS-all-on scheme.
基金The work presented in this paper is supported by the National Key R&D Program of China(No.2016YFB0801303,2016QY01W0105)the National Natural Science Foundation of China(No.U1636219,61602508,61772549,U1736214,61572052)+1 种基金Plan for Scientific Innovation Talent of Henan Province(No.2018JR0018)the Key Technologies R&D Program of Henan Province(No.162102210032).
文摘Precise localization techniques for indoor Wi-Fi access points(APs)have important application in the security inspection.However,due to the interference of environment factors such as multipath propagation and NLOS(Non-Line-of-Sight),the existing methods for localization indoor Wi-Fi access points based on RSS ranging tend to have lower accuracy as the RSS(Received Signal Strength)is difficult to accurately measure.Therefore,the localization algorithm of indoor Wi-Fi access points based on the signal strength relative relationship and region division is proposed in this paper.The algorithm hierarchically divide the room where the target Wi-Fi AP is located,on the region division line,a modified signal collection device is used to measure RSS in two directions of each reference point.All RSS values are compared and the region where the RSS value has the relative largest signal strength is located as next candidate region.The location coordinate of the target Wi-Fi AP is obtained when the localization region of the target Wi-Fi AP is successively approximated until the candidate region is smaller than the accuracy threshold.There are 360 experiments carried out in this paper with 8 types of Wi-Fi APs including fixed APs and portable APs.The experimental results show that the average localization error of the proposed localization algorithm is 0.30 meters,and the minimum localization error is 0.16 meters,which is significantly higher than the localization accuracy of the existing typical indoor Wi-Fi access point localization methods.
文摘The passive optical network(PON)technology has been drastically improved in recent years.In spite of using the optical technology,the utilization of the entire bandwidth is a very challenging task.The main categories of PON are the Ethernet passive optical network(EPON)and gigabit passive optical network(GPON).These two networks use the dynamic bandwidth allocation(DBA)algorithm to attain the maximum usage of bandwidth,which is provided in the network dynamically according to the need of the customers with the support of the service level agreement(SLA).This paper will provide a clear review about the DBA algorithm of both technologies as well as the comparison。
基金supported by the National Natural Science Foundation of China (62101603)the Shenzhen Science and Technology Program(KQTD20190929172704911)+3 种基金the Aeronautical Science Foundation of China (2019200M1001)the National Nature Science Foundation of Guangdong (2021A1515011979)the Guangdong Key Laboratory of Advanced IntelliSense Technology (2019B121203006)the Pearl R iver Talent Recruitment Program (2019ZT08X751)。
文摘With the rapidly growing abuse of drones, monitoring and classification of birds and drones have become a crucial safety issue. With similar low radar cross sections(RCSs), velocities, and heights, drones are usually difficult to be distinguished from birds in radar measurements. In this paper, we propose to exploit different periodical motions of birds and drones from highresolution Doppler spectrum sequences(DSSs) for classification.This paper presents an elaborate feature vector representing the periodic fluctuations of RCS and micro kinematics. Fed by the Doppler spectrum and feature sequence, the long to short-time memory(LSTM) is used to solve the time series classification.Different classification schemes to exploit the Doppler spectrum series are validated and compared by extensive real-data experiments, which confirms the effectiveness and superiorities of the proposed algorithm.
文摘Spectral efficiency(SE) and energy efficiency(EE) in secure communications is of primary importance due to the fact that 5 G wireless networks aim to achieve high throughput,low power consumption and high level of security.Nevertheless,maximizing SE and EE are not achievable simultaneously.In this paper,we investigate the SE and EE tradeoff for secure transmission in cognitive relay networks where all nodes are randomly distributed.We first introduce the opportunistic relay selection policy,where each primary transmitter communicates with the primary receiver with the help of a secondary user as a relay.Then,we evaluate the secure SE and secure EE of the primary network based on the outage probabilities analysis.Thirdly,by applying a unified SE-EE tradeoff metric,the secure SE and EE tradeoff problem is formulated as the joint secure SE and EE maximization problem.Considering the non-concave feature of the objective function,an iterative algorithm is proposed to improve secure SE and EE tradeoff.Numerical results show that the opportunistic relay selection policy is always superior to random relay selection policy.Furthermore,the opportunistic relay selection policy outperforms conventional direct transmission policy when faced with small security threat(i.e.,for smaller eavesdropper density).
基金National Natural Science Foundation of China(61701372)Talents Special Foundation of Northwest A&F University(Z111021801).
文摘Internet of Things (IoT) has emerged as one of the new use cases in the 5th Generation wireless networks. However, the transient nature of the data generated in IoT networks brings great challenges for content caching. In this paper, we study a joint content caching and updating strategy in IoT networks, taking both the energy consumption of the sensors and the freshness loss of the contents into account. In particular, we decide whether or not to cache the transient data and, if so, how often the servers should update their contents. We formulate this content caching and updating problem as a mixed 0–1 integer non-convex optimization programming, and devise a Harmony Search based content Caching and Updating (HSCU) algorithm, which is self-learning and derivativefree and hence stipulates no requirement on the relationship between the objective and variables. Finally, extensive simulation results verify the effectiveness of our proposed algorithm in terms of the achieved satisfaction ratio for content delivery, normalized energy consumption, and overall network utility, by comparing it with some baseline algorithms.
基金This work was supported by the National Key research and development program of China(No.2021YFB 2900401)the national natural science foundation of China(No.62361057,No.61861046)+1 种基金the key natural science foundation of Shenzhen(No.JCYJ20220818102209020)the key research and development program of Shenzhen(No.ZDSYS20210623091807023).
文摘In this paper,an integrated substrate gap waveguide(ISGW)filtering antenna is proposed at millimeter wave band,whose surface wave and spurious modes are simultaneously suppressed.A secondorder filtering response is obtained through a coupling feeding scheme using one uniform impedance resonator(UIR)and two stepped-impedance resonators(SIRs).To increase the stopband width of the antenna,the spurious modes are suppressed by selecting the appropriate sizes of the ISGW unit cell.Furthermore,the ISGW is implemented to improve the radiation performance of the antenna by alleviating the propagation of surface wave.And an equivalent circuit is investigated to reveal the working principle of ISGW.To demonstrate this methodology,an ISGW filtering antenna operating at a center frequency of 25 GHz is designed,fabricated,and measured.The results show that the antenna achieves a stopband width of 1.6f0(center frequency),an out-of-band suppression level of 21 dB,and a peak realized gain of 8.5 dBi.
基金supported by the National key research and development program of China(No.2021YFB2900401)by the National Natural Science Foundation of China(No.61861046)+1 种基金the key Natural Science Foundation of shenzhen(No.JCYJ20220818102209020)the key research and development program of shenzhen(No.ZDSYS20210623091807023)。
文摘A novel dual-band ISGW cavity filter with enhanced frequency selectivity is proposed in this paper by utilizing a multi-mode coupling topology.Its cavity is designed to control the number of modes,and then the ports are determined by analyzing the coupling relationship between these selected modes.By synthesizing the coupling matrix of the filter,a nonresonating node(NRN)structure is introduced to flexibly tune the frequency of modes,which gets a dualband and quad-band filtering response from a tri-band filter no the NRN.Furthermore,a frequency selective surface(FSS)has been newly designed as the upper surface of the cavity,which significantly improves the bad out-of-band suppression and frequency selectivity that often exists in most traditional cavity filter designs and measurements.The results show that its two center frequencies are f01=27.50 GHz and f02=32.92GHz,respectively.Compared with the dual-band filter that there is no the FSS metasurface,the out-of-band suppression level is improved from measured 5 dB to18 dB,and its finite transmission zero(FTZ)numbers is increased from measured 1 to 4 between the two designed bands.Compared with the tri-band and quadband filter,its passband bandwidth is expanded from measured 1.17%,1.14%,and 1.13% or 1.31%,1.50%,0.56%,and 0.57% to 1.71% and 1.87%.In addition,the filter has compact,small,and lightweight characteristics.
基金supported by Guangdong Basic and Applied Basic Research Foundation under Grant 2024A1515012015supported in part by the National Natural Science Foundation of China under Grant 62201336+4 种基金in part by Guangdong Basic and Applied Basic Research Foundation under Grant 2024A1515011541supported in part by the National Natural Science Foundation of China under Grant 62371344in part by the Fundamental Research Funds for the Central Universitiessupported in part by Knowledge Innovation Program of Wuhan-Shuguang Project under Grant 2023010201020316in part by Guangdong Basic and Applied Basic Research Foundation under Grant 2024A1515010247。
文摘In recent times,various power control and clustering approaches have been proposed to enhance overall performance for cell-free massive multipleinput multiple-output(CF-mMIMO)networks.With the emergence of deep reinforcement learning(DRL),significant progress has been made in the field of network optimization as DRL holds great promise for improving network performance and efficiency.In this work,our focus delves into the intricate challenge of joint cooperation clustering and downlink power control within CF-mMIMO networks.Leveraging the potent deep deterministic policy gradient(DDPG)algorithm,our objective is to maximize the proportional fairness(PF)for user rates,thereby aiming to achieve optimal network performance and resource utilization.Moreover,we harness the concept of“divide and conquer”strategy,introducing two innovative methods termed alternating DDPG(A-DDPG)and hierarchical DDPG(H-DDPG).These approaches aim to decompose the intricate joint optimization problem into more manageable sub-problems,thereby facilitating a more efficient resolution process.Our findings unequivo-cally showcase the superior efficacy of our proposed DDPG approach over the baseline schemes in both clustering and downlink power control.Furthermore,the A-DDPG and H-DDPG obtain higher performance gain than DDPG with lower computational complexity.
基金supported in part by the National Science Foundation of China(NSFC)with grant no.62271514in part by the Science,Technology and Innovation Commission of Shenzhen Municipality with grant no.JCYJ20210324120002007 and ZDSYS20210623091807023in part by the State Key Laboratory of Public Big Data with grant no.PBD2023-01。
文摘Recently,deep learning-based semantic communication has garnered widespread attention,with numerous systems designed for transmitting diverse data sources,including text,image,and speech,etc.While efforts have been directed toward improving system performance,many studies have concentrated on enhancing the structure of the encoder and decoder.However,this often overlooks the resulting increase in model complexity,imposing additional storage and computational burdens on smart devices.Furthermore,existing work tends to prioritize explicit semantics,neglecting the potential of implicit semantics.This paper aims to easily and effectively enhance the receiver's decoding capability without modifying the encoder and decoder structures.We propose a novel semantic communication system with variational neural inference for text transmission.Specifically,we introduce a simple but effective variational neural inferer at the receiver to infer the latent semantic information within the received text.This information is then utilized to assist in the decoding process.The simulation results show a significant enhancement in system performance and improved robustness.
文摘The path-following control design for an autonomous underwater vehicle(AUV)requires prior full or partial knowledge about the mathematical model defined through Newton’s second law based on a geometrical investigation.AUV dynamics are highly nonlinear and time-varying,facing unpredictable disturbances due to AUVs operating in deep,hazardous oceanic environments.Consequently,navigation guidance and control systems for AUVs must learn and adapt to the time-varying dynamics of the nonlinear fully coupled vehicle model in the presence of highly unstructured underwater operating conditions.Many control engineers focus on the application of robust model-free adaptive control techniques in AUV maneuvers.Hence,the main goal is to design a novel salp swarm optimization of super twisting algorithm-based secondorder sliding mode controller for the planar path-following control of an AUV through regulation of the heading angle parameter.The finite time for tracking error convergence in the horizontal plane is provided through the control structure architecture,particularly for lateral deviations from the desired path.The proposed control law is designed such that it steers a robotic vehicle to track a predefined planar path at a constant speed determined by an end-user,without any temporal specification.Finally,the efficacy and tracking accuracy are evaluated through comparative analysis based on simulation and experimental hardware-in-loop assessment without violating the input constraints.Moreover,the proposed control law can handle parametric uncertainties and unpredictable disturbances such as ocean currents,wind,and measurement noise.
文摘The development of artificial intelligence(AI)technologies creates a great chance for the iteration of railway monitoring.This paper proposes a comprehensive method for railway utility pole detection.The framework of this paper on railway systems consists of two parts:point cloud preprocessing and railway utility pole detection.Thismethod overcomes the challenges of dynamic environment adaptability,reliance on lighting conditions,sensitivity to weather and environmental conditions,and visual occlusion issues present in 2D images and videos,which utilize mobile LiDAR(Laser Radar)acquisition devices to obtain point cloud data.Due to factors such as acquisition equipment and environmental conditions,there is a significant amount of noise interference in the point cloud data,affecting subsequent detection tasks.We designed a Dual-Region Adaptive Point Cloud Preprocessing method,which divides the railway point cloud data into track and non-track regions.The track region undergoes projection dimensionality reduction,with the projected results being unique and subsequently subjected to 2D density clustering,greatly reducing data computation volume.The non-track region undergoes PCA-based dimensionality reduction and clustering operations to achieve preprocessing of large-scale point cloud scenes.Finally,the preprocessed results are used for training,achieving higher accuracy in utility pole detection and data communication.Experimental results show that our proposed preprocessing method not only improves efficiency but also enhances detection accuracy.
基金supported by Guangdong Natural Science Foundation(2019A1515011622)Guangdong Provincial Laboratory of Southern Marine Science and Engineering (Zhuhai)(SML2021SP407)。
文摘Separated transmit and receive antennas are employed to improve transmit-receive isolation in conventional short-range radars, which greatly increases the antenna size and misaligns of the transmit/receive radiation patterns. In this paper,a dual circularly polarized(CP) monostatic simultaneous transmit and receive(MSTAR) antenna with enhanced isolation is proposed to alleviate the problem. The proposed antenna consists of one sequentially rotating array(SRA), two beamforming networks(BFN), and a combined decoupling structure. The SRA is shared by the transmit and receive to reduce the size of the antenna and to obtain a consistent transmit and receive pattern.The BFN achieve right-hand CP for transmit and left-hand CP for receive. By exploring the combined decoupling structure of uniplanar compact electromagnetic band gap(UC-EBG) and ringshaped defected ground structure(RS-DGS), good transmitreceive isolation is achieved. The proposed antenna prototype is fabricated and experimentally characterized. The simulated and measured results show good agreement. The demonstrate transmit/receive isolation is height than 33 dB, voltage standing wave ratio is lower than 2, axial ratio is lower than 3 dB, and consistent radiation for both transmit and receive is within4.25-4.35 GHz.
基金supported in part by Guangdong Basic and Applied Basic Research Foundation under Grants 2023A1515030118 and 2024A1515010012in part by the Guangzhou Science and Technology Project under Grant 2023A03J0110+3 种基金in part by Guangzhou Basic Research Program Municipal School(College)Joint Funding Project under Grant 2025A03J3119in part by National Natural Science Foundation of China under Grant 62173101in part by the Key Discipline Project of Guangzhou Education Bureau under Grant 202255467in part by the Key Laboratory of on-Chip Communication and Sensor Chip of Guangdong Higher Education Institutes under Grant 2023KSYS002。
文摘The simultaneously transmitting and reflecting reconfigurable intelligent surface(STAR-RIS)is regarded as a promising paradigm for enhancing the connectivity and reliability of non-orthogonal multiple access(NOMA)networks.However,the transmission of STAR-RIS enhanced NOMA networks performance is severely limited due to the inter-user interference(IUI)on multi-user detections.To mitigate this drawback,we propose a generalized quadrature spatial modulation(GQSM)aided STAR-RIS in conjunction with the NOMA scheme,termed STARRIS-NOMA-GQSM,to improve the performance of the corresponding NGMA network.By STAR-RISNOMA-GQSM,the information bits for all users in transmission and reflection zones are transmitted via orthogonal signal domains to eliminate the IUI so as to greatly improve the system performance.The lowcomplexity detection and upper-bounded bit error rate(BER)of STAR-RIS-NOMA-GQSM are both studied to evaluate its feasibility and performance.Moreover,by further utilizing index modulation(IM),we propose an enhanced STAR-RIS-NOMA-GQSM scheme,termed E-STAR-RIS-NOMA-GQSM,to enhance the transmission rate by dynamically adjusting reflection patterns in both transmission and reflection zones.Simulation results show that the proposed original and enhanced scheme significantly outperform the conventional STAR-RIS-NOMA and also confirm the precision of the theoretical analysis of the upper-bounded BER.
基金supported by the Science and Technique Commission Foundation of Fujian Province(2018H6023)。
文摘To avoid the complicated motion compensation in interferometric inverse synthetic aperture(InISAR)and achieve realtime three-dimensional(3 D)imaging,a novel approach for 3 D imaging of the target only using a single echo is presented.This method is based on an isolated scatterer model assumption,thus the scatterers in the beam can be extracted individually.The radial range of each scatterer is estimated by the maximal likelihood estimation.Then,the horizontal and vertical wave path difference is derived by using the phase comparison technology for each scatterer,respectively.Finally,by utilizing the relationship among the 3 D coordinates,the radial range,the horizontal and vertical wave path difference,the 3 D image of the target can be reconstructed.The reconstructed image is free from the limitation in InISAR that the image plane depends on the target's own motions and on its relative position with respect to the radar.Furthermore,a phase ambiguity resolution method is adopted to ensure the success of the 3 D imaging when phase ambiguity occurs.It can be noted that the proposed phase ambiguity resolution method only uses one antenna pair and does not require a priori knowledge,whereas the existing phase ambiguity methods may require two or more antenna pairs or a priori knowledge for phase unwarping.To evaluate the performance of the proposed method,the theoretical analyses on estimation accuracy are presented and the simulations in various scenarios are also carried out.
基金This work was supported in part by the Guangdong Basic and Applied Basic Research Foundation under Key Project 2019B1515120032in part by the National Science Foundation of China(NSFC)with grant no.61901534+3 种基金in part by the Science,Technology and Innovation Commission of Shenzhen Municipality with grant no.JCYJ20190807155617099in part by the University Basic Research Fund 20lgpy43in part by the Guangdong Natural Science Foundation of Grant No.2019A1515011622the Foundation of Grant No.2019-JCJQ-JJ-411.
文摘In the Internet of vehicles(IoV),direct communication between vehicles,i.e.,vehicle-tovehicle(V2V)may have lower latency,compared to the schemes with help of Road Side Unit(RSU)or base station.In this paper,the scenario where the demands of a vehicle are satisfied by cooperative transmissions from those one in front is considered.Since the topology of the vehicle network is dynamic,random linear network coding is applied in such a multisource single-sink vehicle-to-vehicle network,where each vehicle is assumed to broadcast messages to others so that the intermediate vehicles between sources and sink can reduce the latency collaboratively.It is shown that the coding scheme can significantly reduce the time delay compared with the non-coding scheme even in the channels with high packet loss rate.In order to further optimize the coding scheme,one can increase the generation size,where the generation size means the number of raw data packets sent by the source node to the sink node in each round of communication.Under the premise of satisfying the coding validity,we can dynamically select the Galois field size according to the number of intermediate nodes.It is not surprised that the reduction in the Galois field size can further reduce the transmission latency.
基金The Fundamental Research Funds for Zhejiang Provincial Universities and Research Institutes under contract No.2019J00010the National Key Research and Development Program of China under contract No.2017YFA0604901+2 种基金the National Natural Science Foundation of China under contract Nos 41806005,41676014 and 41776183the Public Welfare Technical Applied Research Project of Zhejiang Province of China under contract No.LGF19D060003the Science and Technology Project of Zhoushan City under contract No.2019C21008
文摘Gaofen-3(GF-3),a Chinese civil synthetic aperture radar(SAR)at C-band,has operated since August 2016.Remarkably,several typhoons have been captured by GF-3 around the China Seas over its last two-year mission.In this study,six images acquired in Global Observation(GLO)and Wide ScanSAR(WSC)modes at verticalvertical(VV)polarization channel are discussed.This work focuses on investigating the observation of rainfall using GF-3 SAR.These images were collocated with winds from the European Centre for Medium-Range Weather Forecasts(ECMWF),significant wave height simulated from the WAVEWATCH-III(WW3)model,sea surface currents from climate forecast system version 2(CFSv2)of the National Centers for Environmental Prediction(NCEP)and rain rate data from the Tropical Rainfall Measuring Mission(TRMM)satellite.Sea surface roughness,was compared with the normalized radar cross section(NRCS)from SAR observations,and indicated a 0.8 correlation(COR).We analyzed the dependences of the difference between model-simulated NRCS and SARmeasured NRCS on the TRMM rain rate and WW3-simulated significant wave height.It was found that the effects of rain on SAR damps the radar signal at incidence angles ranging from 15°to 30°,while it enhances the radar signal at incidence angles ranging from 30°to 45°and incidence angles smaller than 10°.This behavior is consistent with previous studies and an algorithm for rain rate retrieval is anticipated for GF-3 SAR.
基金supported by MOST under Grant No.MOST 104-2221-E-468-007。
文摘The number of films is numerous and the film contents are complex over the Internet and multimedia sources. It is time consuming for a viewer to select a favorite film. This paper presents an automatic recognition system of film types. Initially, a film is firstly sampled as frame sequences. The color space, including hue, saturation,and brightness value(HSV), is analyzed for each sampled frame by computing the deviation and mean of HSV for each film. These features are utilized as inputs to a deep-learning neural network(DNN) for the recognition of film types. One hundred films are utilized to train and validate the model parameters of DNN. In the testing phase, a film is recognized as one of the five categories, including action, comedy, horror thriller, romance, and science fiction, by the trained DNN. The experimental results reveal that the film types can be effectively recognized by the proposed approach, enabling the viewer to select an interesting film accurately and quickly.