For Inertial Navigation System(INS)/Celestial Navigation System(CNS)/Global Navigation Satellite System(GNSS)integrated navigation system of the missile,the performance of data fusion algorithms based on the Cubature ...For Inertial Navigation System(INS)/Celestial Navigation System(CNS)/Global Navigation Satellite System(GNSS)integrated navigation system of the missile,the performance of data fusion algorithms based on the Cubature Kalman Filter(CKF)is seriously degraded when there are non-Gaussian noise and process-modeling errors in the system model.Therefore,a novel method is proposed,which is called Optimal Data Fusion algorithm based on the Adaptive Fading maximum Correntropy generalized high-degree CKF(AFCCKF-ODF).First,the Adaptive Fading maximum Correntropy generalized high-degree CKF(AFCCKF)is proposed and used as the local filter for the INS/GNSS and INS/CNS subsystems to improve the robustness of local state estimation.Then,the local state estimation is fused based on the minimum variance principle and highdegree cubature criterion to get the globally optimal state.Finally,the experimental results verify that the proposed algorithm can significantly improve the robustness of the missile-borne INS/CNS/GNSS integrated navigation system to non-Gaussian noise and process modeling error and obtain the global optimal navigation information.展开更多
With the merits of low cost,environmental benignity,and high safety,aqueous zinc ion batteries(AZIBs)have great potential in the field of energy storage.In this paper,we craft a Co-doped Ni3 S2 with abundant sulfur va...With the merits of low cost,environmental benignity,and high safety,aqueous zinc ion batteries(AZIBs)have great potential in the field of energy storage.In this paper,we craft a Co-doped Ni3 S2 with abundant sulfur vacancies as effective cathode materials(Co-Ni_(3) S_(2-x)) for AZIBs by hydrothermal and chemical reduction method.Notably,cobalt doping and abundant sulfur vacancies can effectively increase the conductivity and the number of active sites for electrochemical reactions,which gives the Co-Ni_(3) S_(2-x) electrode the outstanding capability to energy storage.By coupling Co-Ni_(3) S_(2-x) cathode with Zn anodes to assemble alkaline AZIBs,the Co-Ni_(3) S_(2-x)//Zn full battery exhibits excellent specific capacity(183.9 mAh g^(-1) at 1 A g^(-1),based on cathode mass) and extraordinary cycling durability(72.9% capacity retention after 6000 cycles).First-principles calculations based on density functional theory(DFT) confirm that the Co-Ni_(3) S_(2-x) electrode has strong energy storage capacity and electrochemical stability.The results provide an extremely significant reference in designs of self-supported bimetallic sulfide nanosheets,which have promising applications in high-performance energy storage devices.展开更多
Zinc-ion batteries are under current research focus because of their uniqueness in low cost and high safety.However,the pursuing of high-performance cathode materials of aqueous Zinc ion batteries(AZBs)with low cost,h...Zinc-ion batteries are under current research focus because of their uniqueness in low cost and high safety.However,the pursuing of high-performance cathode materials of aqueous Zinc ion batteries(AZBs)with low cost,high energy density and long cycle life has become the key problem to be solved.Herein we synthesized a series of amorphous nickel borate(AM-NiBO)nanosheets by varying corrosion time with in-situ electrochemical corrosion method.The AM-NiBO-T13 as electrode material possesses a high areal capacity of 0.65 m Ah/cm^(2) with the capacity retention of 95.1%after 2000 cycles.In addition,the assembled AM-NiBO-T13//Zn provides high energy density(0.77 m Wh/cm^(2) at 1.76 m W/cm^(2)).The high areal capacity and better cycling performance can be owing to the amorphous nanosheets structure and the stable coordination characteristics of boron and oxygen in borate materials.It shows that amorphous nickel borate nanosheets have great prospects in the field of energy storage.展开更多
Constructing two-dimensional(2D)layered materials with traditional three-dimensional(3D)semiconductors into complex heterostructures has opened a new platform for the development of optoelectronic devices.Herein,large...Constructing two-dimensional(2D)layered materials with traditional three-dimensional(3D)semiconductors into complex heterostructures has opened a new platform for the development of optoelectronic devices.Herein,large-area high performance self-driven photodetectors based on monolayer WS2∕GaAs heterostructures were successfully fabricated with a wide response spectrum band ranging from the ultraviolet to near-infrared region.The detector exhibits an overall high performance,including high photoresponsivity of 65.58 A/W at 365 nm and 28.50 A/W at 880 nm,low noise equivalent power of 1.97×10^−15 W∕Hz1∕2,high detectivity of 4.47×10^12 Jones,and fast response speed of 30/10 ms.This work suggests that the WS2∕GaAs heterostructure is promising in future novel optoelectronic device applications,and also provides a low-cost,easy-to-process method for the preparation of 2D/3D heterojunction-based devices.展开更多
Two-dimensional(2 D) Te nanosheets were successfully fabricated through the liquid-phase exfoliation(LPE) method. The nonlinear optical properties of 2 D Te nanosheets were studied by the open-aperture Z-scan techniqu...Two-dimensional(2 D) Te nanosheets were successfully fabricated through the liquid-phase exfoliation(LPE) method. The nonlinear optical properties of 2 D Te nanosheets were studied by the open-aperture Z-scan technique. Furthermore, the continuous wave mode-locked Nd:YVO4 laser was successfully realized by using 2 D Te as a saturable absorber(SA) for the first time, to the best of our knowledge. Ultrashort pulses as short as 5.8 ps were obtained at 1064.3 nm with an output power of 851 m W. This primary investigation indicates that the 2 D Te SA is a promising photonic device in the fields of ultrafast solid-state lasers.展开更多
To improve the security and effectiveness of mobile robot path planning, a slime mould rapid-expansion random tree(S-RRT) algorithm is proposed. This path planning algorithm is designed based on a biological optimizat...To improve the security and effectiveness of mobile robot path planning, a slime mould rapid-expansion random tree(S-RRT) algorithm is proposed. This path planning algorithm is designed based on a biological optimization model and a rapid-expansion random tree(RRT) algorithm. S-RRT algorithm can use the function of optimal direction to constrain the generation of a new node. By controlling the generation direction of the new node, an optimized path can be achieved. Thus, the path oscillation is reduced and the planning time is shortened. It is proved that S-RRT algorithm overcomes the limitation of paths zigzag of RRT algorithm through theoretical analysis. Experiments show that S-RRT algorithm is superior to RRT algorithm in terms of safety and efficiency.展开更多
The selection and development of cathode of alkaline zinc batteries(AZBs)is still hindered and often leads to poor rate capability and short cycle life.Here,amorphous hollow nickel-cobalt-based sulfides nanocages with...The selection and development of cathode of alkaline zinc batteries(AZBs)is still hindered and often leads to poor rate capability and short cycle life.Here,amorphous hollow nickel-cobalt-based sulfides nanocages with nanosheet arrays(AM-NCS)are designed and constructed with ZIF-67 as the selftemplate to exchange with Ni^(2+) and S^(2-) by using a two-step ion exchange method.The synthesized AM-NCS possess the high specific capacity(160 m Ah/g at 2 A/g),and the assembled battery has excellent rate performance(146 m Ah/g reversible capacity at 5 A/g).The assembled device has excellent rate performance(155 m Ah/g at 2 A/g)and long cycling stability(7000 cycles,62.5%of initial capacity).The excellent electrochemical properties of the electrode materials are mainly attributed to the unique structure,in particular,polyhedron structure with hollow structure can improve the cyclic stability,and the amorphous structure can expose more reactive sites on the surfaces of nickel,cobalt and sulfur.This work provides a new strategy for the design and fabrication of high performance cathode materials for AZBs.展开更多
Mobile robots have been used for many industrial scenarios which can realize automated manufacturing process instead of human workers. To improve the quality of the optimal rapidly-exploring random tree(RRT^(*)) for p...Mobile robots have been used for many industrial scenarios which can realize automated manufacturing process instead of human workers. To improve the quality of the optimal rapidly-exploring random tree(RRT^(*)) for planning path in dynamic environment, a high-quality dynamic rapidly-exploring random tree(HQD-RRT^(*)) algorithm is proposed in this paper, which generates a high-quality solution with optimal path length in dynamic environment. This method proceeds in two stages: initial path generation and path re-planning. Firstly, the initial path is generated by an improved smart rapidly-exploring random tree(RRT^(*)-SMART) algorithm, and the state tree information is stored as prior knowledge. During the process of path execution, a strategy of obstacle avoidance is proposed to avoid moving obstacles. The cost and smoothness of path are considered to re-plan the initial path to improve the path quality in this strategy. Compared with related work, a higher-quality path in dynamic environment can be achieved in this paper. HQD-RRT^(*) algorithm can obtain an optimal path with better stability. Simulations on the static and dynamic environment are conducted to clarify the efficiency of HQD-RRT^(*) in avoiding unknown obstacles.展开更多
基金supported by the National Natural Science Foundation of China(Nos.61873064 and 51375087)the Transformation Program of Science and Technology Achievements of Jiangsu Province(No.BA2016139)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX18_0073)。
文摘For Inertial Navigation System(INS)/Celestial Navigation System(CNS)/Global Navigation Satellite System(GNSS)integrated navigation system of the missile,the performance of data fusion algorithms based on the Cubature Kalman Filter(CKF)is seriously degraded when there are non-Gaussian noise and process-modeling errors in the system model.Therefore,a novel method is proposed,which is called Optimal Data Fusion algorithm based on the Adaptive Fading maximum Correntropy generalized high-degree CKF(AFCCKF-ODF).First,the Adaptive Fading maximum Correntropy generalized high-degree CKF(AFCCKF)is proposed and used as the local filter for the INS/GNSS and INS/CNS subsystems to improve the robustness of local state estimation.Then,the local state estimation is fused based on the minimum variance principle and highdegree cubature criterion to get the globally optimal state.Finally,the experimental results verify that the proposed algorithm can significantly improve the robustness of the missile-borne INS/CNS/GNSS integrated navigation system to non-Gaussian noise and process modeling error and obtain the global optimal navigation information.
基金financially supported by the Independent Cultivation Program of Innovation Team of Ji’nan City (No.2019GXRC011)National Natural Science Foundation of China(Nos. 21707043, 51908242)the Natural Science Foundation of Shandong Province (No. ZR2017BEE005)。
文摘With the merits of low cost,environmental benignity,and high safety,aqueous zinc ion batteries(AZIBs)have great potential in the field of energy storage.In this paper,we craft a Co-doped Ni3 S2 with abundant sulfur vacancies as effective cathode materials(Co-Ni_(3) S_(2-x)) for AZIBs by hydrothermal and chemical reduction method.Notably,cobalt doping and abundant sulfur vacancies can effectively increase the conductivity and the number of active sites for electrochemical reactions,which gives the Co-Ni_(3) S_(2-x) electrode the outstanding capability to energy storage.By coupling Co-Ni_(3) S_(2-x) cathode with Zn anodes to assemble alkaline AZIBs,the Co-Ni_(3) S_(2-x)//Zn full battery exhibits excellent specific capacity(183.9 mAh g^(-1) at 1 A g^(-1),based on cathode mass) and extraordinary cycling durability(72.9% capacity retention after 6000 cycles).First-principles calculations based on density functional theory(DFT) confirm that the Co-Ni_(3) S_(2-x) electrode has strong energy storage capacity and electrochemical stability.The results provide an extremely significant reference in designs of self-supported bimetallic sulfide nanosheets,which have promising applications in high-performance energy storage devices.
基金supported by the Independent Cultivation Program of Innovation Team of Ji’nan City(No.2019GXRC011)。
文摘Zinc-ion batteries are under current research focus because of their uniqueness in low cost and high safety.However,the pursuing of high-performance cathode materials of aqueous Zinc ion batteries(AZBs)with low cost,high energy density and long cycle life has become the key problem to be solved.Herein we synthesized a series of amorphous nickel borate(AM-NiBO)nanosheets by varying corrosion time with in-situ electrochemical corrosion method.The AM-NiBO-T13 as electrode material possesses a high areal capacity of 0.65 m Ah/cm^(2) with the capacity retention of 95.1%after 2000 cycles.In addition,the assembled AM-NiBO-T13//Zn provides high energy density(0.77 m Wh/cm^(2) at 1.76 m W/cm^(2)).The high areal capacity and better cycling performance can be owing to the amorphous nanosheets structure and the stable coordination characteristics of boron and oxygen in borate materials.It shows that amorphous nickel borate nanosheets have great prospects in the field of energy storage.
基金supported by the Independent Cultivation Program of Innovation Team of Jinan City(2019GXRC011)the Natural Science Foundation of Shandong Province(ZR2021ME143)the National Natural Science Foundation of China(51908242).
基金National Natural Science Foundation of China(61804086)Natural Science Foundation of Shandong Province(ZR2019PF002)+1 种基金Jiangsu Province Science Foundation for Youths(BK20170431)Changzhou Science and Technology Project(CJ20190010).
文摘Constructing two-dimensional(2D)layered materials with traditional three-dimensional(3D)semiconductors into complex heterostructures has opened a new platform for the development of optoelectronic devices.Herein,large-area high performance self-driven photodetectors based on monolayer WS2∕GaAs heterostructures were successfully fabricated with a wide response spectrum band ranging from the ultraviolet to near-infrared region.The detector exhibits an overall high performance,including high photoresponsivity of 65.58 A/W at 365 nm and 28.50 A/W at 880 nm,low noise equivalent power of 1.97×10^−15 W∕Hz1∕2,high detectivity of 4.47×10^12 Jones,and fast response speed of 30/10 ms.This work suggests that the WS2∕GaAs heterostructure is promising in future novel optoelectronic device applications,and also provides a low-cost,easy-to-process method for the preparation of 2D/3D heterojunction-based devices.
基金supported by the National Natural Science Foundation of China (Nos. 12004208, 51302285, 61675217, and 61975221)Natural Science Foundation of Shanghai (No. 19ZR1479300)+3 种基金Key Research Program of Frontier Science of CAS (No. QYZDB-SSW-JSC041)Program of Shanghai Academic Research Leader (No. 17XD1403900)Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB16030700)Key Laboratory of Optoelectronic Information Technology, Ministry of Education (Tianjin University)。
文摘Two-dimensional(2 D) Te nanosheets were successfully fabricated through the liquid-phase exfoliation(LPE) method. The nonlinear optical properties of 2 D Te nanosheets were studied by the open-aperture Z-scan technique. Furthermore, the continuous wave mode-locked Nd:YVO4 laser was successfully realized by using 2 D Te as a saturable absorber(SA) for the first time, to the best of our knowledge. Ultrashort pulses as short as 5.8 ps were obtained at 1064.3 nm with an output power of 851 m W. This primary investigation indicates that the 2 D Te SA is a promising photonic device in the fields of ultrafast solid-state lasers.
基金supported by the National Natural Science Foundation of China (61701270)。
文摘To improve the security and effectiveness of mobile robot path planning, a slime mould rapid-expansion random tree(S-RRT) algorithm is proposed. This path planning algorithm is designed based on a biological optimization model and a rapid-expansion random tree(RRT) algorithm. S-RRT algorithm can use the function of optimal direction to constrain the generation of a new node. By controlling the generation direction of the new node, an optimized path can be achieved. Thus, the path oscillation is reduced and the planning time is shortened. It is proved that S-RRT algorithm overcomes the limitation of paths zigzag of RRT algorithm through theoretical analysis. Experiments show that S-RRT algorithm is superior to RRT algorithm in terms of safety and efficiency.
基金the Independent Cultivation Program of Innovation Team of Ji’nan City(No.2019GXRC011)National Natural Science Foundation of China(No.51802177)Natural Science Foundation of Shandong Province(No.ZR2020QE062)。
文摘The selection and development of cathode of alkaline zinc batteries(AZBs)is still hindered and often leads to poor rate capability and short cycle life.Here,amorphous hollow nickel-cobalt-based sulfides nanocages with nanosheet arrays(AM-NCS)are designed and constructed with ZIF-67 as the selftemplate to exchange with Ni^(2+) and S^(2-) by using a two-step ion exchange method.The synthesized AM-NCS possess the high specific capacity(160 m Ah/g at 2 A/g),and the assembled battery has excellent rate performance(146 m Ah/g reversible capacity at 5 A/g).The assembled device has excellent rate performance(155 m Ah/g at 2 A/g)and long cycling stability(7000 cycles,62.5%of initial capacity).The excellent electrochemical properties of the electrode materials are mainly attributed to the unique structure,in particular,polyhedron structure with hollow structure can improve the cyclic stability,and the amorphous structure can expose more reactive sites on the surfaces of nickel,cobalt and sulfur.This work provides a new strategy for the design and fabrication of high performance cathode materials for AZBs.
基金supported by the Program for Youth Innovative Research Team in the University of Shandong Province in China(2019KJN010)。
文摘Mobile robots have been used for many industrial scenarios which can realize automated manufacturing process instead of human workers. To improve the quality of the optimal rapidly-exploring random tree(RRT^(*)) for planning path in dynamic environment, a high-quality dynamic rapidly-exploring random tree(HQD-RRT^(*)) algorithm is proposed in this paper, which generates a high-quality solution with optimal path length in dynamic environment. This method proceeds in two stages: initial path generation and path re-planning. Firstly, the initial path is generated by an improved smart rapidly-exploring random tree(RRT^(*)-SMART) algorithm, and the state tree information is stored as prior knowledge. During the process of path execution, a strategy of obstacle avoidance is proposed to avoid moving obstacles. The cost and smoothness of path are considered to re-plan the initial path to improve the path quality in this strategy. Compared with related work, a higher-quality path in dynamic environment can be achieved in this paper. HQD-RRT^(*) algorithm can obtain an optimal path with better stability. Simulations on the static and dynamic environment are conducted to clarify the efficiency of HQD-RRT^(*) in avoiding unknown obstacles.