This paper introduces an intelligent garbage-handling trolley model based on an STM32 single chip microcomputer as the control core.The device is driven by four independent motors to achieve automatic tracking,automat...This paper introduces an intelligent garbage-handling trolley model based on an STM32 single chip microcomputer as the control core.The device is driven by four independent motors to achieve automatic tracking,automatic obstacle avoidance,and fixed-point docking.Using external execution structure to realize the car without the use of a mechanical arm,complete garbage collection,storage,and uninstall function.On this basis,the type of garbage is marked by color,and the color recognition sensor is applied to realize the type recognition after garbage collection and put into the corresponding unloading point,to realize its intelligent classification function.It can automatically complete the established task autonomously.展开更多
Temporal-spatial cross-correlation analysis of non-stationary wind speed time series plays a crucial role in wind field reconstruction as well as in wind pattern recognition.Firstly,the near-surface wind speed time se...Temporal-spatial cross-correlation analysis of non-stationary wind speed time series plays a crucial role in wind field reconstruction as well as in wind pattern recognition.Firstly,the near-surface wind speed time series recorded at different locations are studied using the detrended fluctuation analysis(DFA),and the corresponding scaling exponents are larger than 1.This indicates that all these wind speed time series have non-stationary characteristics.Secondly,concerning this special feature( i.e.,non-stationarity)of wind signals,a cross-correlation analysis method,namely detrended cross-correlation analysis(DCCA) coefficient,is employed to evaluate the temporal-spatial cross-correlations between non-stationary time series of different anemometer pairs.Finally,experiments on ten wind speed data synchronously collected by the ten anemometers with equidistant arrangement illustrate that the method of DCCA cross-correlation coefficient can accurately analyze full-scale temporal-spatial cross-correlation between non-stationary time series and also can easily identify the seasonal component,while three traditional cross-correlation techniques(i.e.,Pearson coefficient,cross-correlation function,and DCCA method) cannot give us these information directly.展开更多
For the hybrid multi-infeed HVDC system in which the receiving-end grid is a strong AC grid including LCC-HVDC subsystems and multiple VSC-HVDC subsystems,it has higher voltage support capability.However,for weak AC g...For the hybrid multi-infeed HVDC system in which the receiving-end grid is a strong AC grid including LCC-HVDC subsystems and multiple VSC-HVDC subsystems,it has higher voltage support capability.However,for weak AC grid,the voltage support capability of the multi-VSC-HVDC subsystems to the LCC-HVDC subsystem(voltage support capability-mVSCs-LCC)can resist the risk of commutation failure.Based on this consideration,this paper proposes an evaluation index called Dynamic Voltage Support Strength Factor(DVSF)for the hybrid multi-infeed system,and uses this index to qualitatively judge the voltage support capability-mVSCs-LCC in weak AC grid.In addition,the proposed evaluation index can also indirectly judge the ability of the LCC-HVDC subsystem to suppress commutation failure.Firstly,the mathematical model of the power flow of the LCC and VSC networks in the steady-state is analyzed,and the concept of DVSF applied to hybrid multi-infeed system is proposed.Furthermore,the DVSF index is also used to qualitatively judge the voltage support capability-mVSCs-LCC.Secondly,the influence of multiple VSC-HVDC subsystems with different operation strategies on the DVSF is analyzed with reference to the concept of DVSF.Finally,the indicators proposed in this paper are compared with other evaluation indicators through MATLAB simulation software to verify its effectiveness.More importantly,the effects of multi-VSC-HVDC subsystems using different coordinated control strategies on the voltage support capability of the receiving-end LCC-HVDC subsystem are also verified.展开更多
Tin(Sn)-based perovskite solar cells(PSCs)have received increasing attention in the domain of photovoltaics due to their environmentally friendly nature.In this paper,numerical modeling and simulation of hole transpor...Tin(Sn)-based perovskite solar cells(PSCs)have received increasing attention in the domain of photovoltaics due to their environmentally friendly nature.In this paper,numerical modeling and simulation of hole transport material(HTM)-free PSC based on methyl ammonium tin triiodide(CH_(3) NH_(3) SnI_(3))was performed using a one-dimensional solar cell capacitance simulator(SCAPS-1D)software.The eff ect of perovskite thickness,interface defect density,temperature,and electron transport material(ETM)on the photovoltaic performance of the device was explored.Prior to optimization,the device demonstrated a power conversion effi ciency(PCE)of 8.35%,fi ll factor(FF)of 51.93%,short-circuit current density(J_(sc))of 26.36 mA/cm 2,and open circuit voltage(V_(oc))of 0.610 V.Changing the above parameters individually while keeping others constant,the obtained optimal absorber thickness was 1.0μm,the interface defect density was 1010 cm-2,the temperature was 290 K,and the TiO 2 thickness was 0.01μm.On simulating with the optimized data,the fi nal device gave a PCE of 11.03%,FF of 50.78%,J_(sc) of 29.93 mA/cm 2,and V_(oc) of 0.726 V.Comparing the optimized and unoptimized metric parameters,an improvement of~32.10%in PCE,~13.41%in J_(sc),and~19.02%in V_(oc) were obtained.Therefore,the results of this study are encouraging and can pave the path for developing highly effi cient PSCs that are cost-eff ective,eco-friendly,and comparable to state-of-the-art.展开更多
In order to improve the reliability of fault identification of the double-circuit transmission lines on the same tower, a new algorithm for fast protection of double-circuit transmission lines on the same tower based ...In order to improve the reliability of fault identification of the double-circuit transmission lines on the same tower, a new algorithm for fast protection of double-circuit transmission lines on the same tower based on the reactive powers of traveling wave is proposed. With the implementation of S-transform, the initial traveling wave reactive powers are calculated and the change characteristics of reactive power under different fault conditions are studied. The protection criterion is constructed by analyzing the ratio of the reactive powers of the same end on double-circuit transmission lines and the ratio of the reactive powers at both ends on the same line. According to the ratio of reactive power on the same side of the line and both ends of the same line, it is possible to identify whether the faults of the double-circuit line of the same tower occurred in or out of the protection zone. A large number of simulation results show that the protection performance is sensitive and reliable, and quick to respond. The criterion is simple and is basically not affected by fault initial angles, fault types, and transitional resistances.展开更多
In view of the fact that the wavelet packet transform(WPT) can only weakly detect the occurrence of fault, this paper applies a fault diagnosis algorithm including wavelet packet transform and principal component anal...In view of the fact that the wavelet packet transform(WPT) can only weakly detect the occurrence of fault, this paper applies a fault diagnosis algorithm including wavelet packet transform and principal component analysis(PCA) to the inverter-side fault diagnosis of multi-terminal hybrid highvoltage direct current(HVDC) network, which can significantly improve the speed and accuracy of fault diagnosis. Firstly, current amplitude and current slope are used to sample the data,and the WPT is used to extract the energy spectrum of the signal. Secondly, an energy matrix is constructed, and the PCA method is used to calculate whether the squared prediction error(SPE) statistics of various signals that can reflect the degree of deviation of the measured value from the principal component model at a certain time exceed the limit to judge the occurrence of the fault. Further, its maximum value is compared to determine the fault types. Finally, based on a large number of MATLAB/Simulink simulation results, it is shown that the PCA method using the current slope as the sampled data can detect the occurrence of a ground fault with small transition resistance within 2 ms, and identify the fault types within 10 ms,without being affected by the sampling frequency.展开更多
The increasing use of distributed energy resources changes the way to manage the electricity system.Unlike the traditional centralized powered utility,many homes and businesses with local electricity generators have e...The increasing use of distributed energy resources changes the way to manage the electricity system.Unlike the traditional centralized powered utility,many homes and businesses with local electricity generators have established their own microgrids,which increases the use of renewable energy while introducing a new challenge to the management of the microgrid system from the mismatch and unknown of renewable energy generations,load demands,and dynamic electricity prices.To address this challenge,a rank-based multiple-choice secretary algorithm(RMSA)was proposed for microgrid management,to reduce the microgrid operating cost.Rather than relying on the complete information of future dynamic variables or accurate predictive approaches,a lightweight solution was used to make real-time decisions under uncertainties.The RMSA enables a microgrid to reduce the operating cost by determining the best electricity purchase timing for each task under dynamic pricing.Extensive experiments were conducted on real-world data sets to prove the efficacy of our solution in complex and divergent real-world scenarios.展开更多
文摘This paper introduces an intelligent garbage-handling trolley model based on an STM32 single chip microcomputer as the control core.The device is driven by four independent motors to achieve automatic tracking,automatic obstacle avoidance,and fixed-point docking.Using external execution structure to realize the car without the use of a mechanical arm,complete garbage collection,storage,and uninstall function.On this basis,the type of garbage is marked by color,and the color recognition sensor is applied to realize the type recognition after garbage collection and put into the corresponding unloading point,to realize its intelligent classification function.It can automatically complete the established task autonomously.
基金Projects(61271321,61573253,61401303)supported by the National Natural Science Foundation of ChinaProject(14ZCZDSF00025)supported by Tianjin Key Technology Research and Development Program,China+1 种基金Project(13JCYBJC17500)supported by Tianjin Natural Science Foundation,ChinaProject(20120032110068)supported by Doctoral Fund of Ministry of Education of China
文摘Temporal-spatial cross-correlation analysis of non-stationary wind speed time series plays a crucial role in wind field reconstruction as well as in wind pattern recognition.Firstly,the near-surface wind speed time series recorded at different locations are studied using the detrended fluctuation analysis(DFA),and the corresponding scaling exponents are larger than 1.This indicates that all these wind speed time series have non-stationary characteristics.Secondly,concerning this special feature( i.e.,non-stationarity)of wind signals,a cross-correlation analysis method,namely detrended cross-correlation analysis(DCCA) coefficient,is employed to evaluate the temporal-spatial cross-correlations between non-stationary time series of different anemometer pairs.Finally,experiments on ten wind speed data synchronously collected by the ten anemometers with equidistant arrangement illustrate that the method of DCCA cross-correlation coefficient can accurately analyze full-scale temporal-spatial cross-correlation between non-stationary time series and also can easily identify the seasonal component,while three traditional cross-correlation techniques(i.e.,Pearson coefficient,cross-correlation function,and DCCA method) cannot give us these information directly.
基金supported by the National Natural Science Foundation of China-State Grid Joint Fund for Smart Grid(No.U2066210).
文摘For the hybrid multi-infeed HVDC system in which the receiving-end grid is a strong AC grid including LCC-HVDC subsystems and multiple VSC-HVDC subsystems,it has higher voltage support capability.However,for weak AC grid,the voltage support capability of the multi-VSC-HVDC subsystems to the LCC-HVDC subsystem(voltage support capability-mVSCs-LCC)can resist the risk of commutation failure.Based on this consideration,this paper proposes an evaluation index called Dynamic Voltage Support Strength Factor(DVSF)for the hybrid multi-infeed system,and uses this index to qualitatively judge the voltage support capability-mVSCs-LCC in weak AC grid.In addition,the proposed evaluation index can also indirectly judge the ability of the LCC-HVDC subsystem to suppress commutation failure.Firstly,the mathematical model of the power flow of the LCC and VSC networks in the steady-state is analyzed,and the concept of DVSF applied to hybrid multi-infeed system is proposed.Furthermore,the DVSF index is also used to qualitatively judge the voltage support capability-mVSCs-LCC.Secondly,the influence of multiple VSC-HVDC subsystems with different operation strategies on the DVSF is analyzed with reference to the concept of DVSF.Finally,the indicators proposed in this paper are compared with other evaluation indicators through MATLAB simulation software to verify its effectiveness.More importantly,the effects of multi-VSC-HVDC subsystems using different coordinated control strategies on the voltage support capability of the receiving-end LCC-HVDC subsystem are also verified.
文摘Tin(Sn)-based perovskite solar cells(PSCs)have received increasing attention in the domain of photovoltaics due to their environmentally friendly nature.In this paper,numerical modeling and simulation of hole transport material(HTM)-free PSC based on methyl ammonium tin triiodide(CH_(3) NH_(3) SnI_(3))was performed using a one-dimensional solar cell capacitance simulator(SCAPS-1D)software.The eff ect of perovskite thickness,interface defect density,temperature,and electron transport material(ETM)on the photovoltaic performance of the device was explored.Prior to optimization,the device demonstrated a power conversion effi ciency(PCE)of 8.35%,fi ll factor(FF)of 51.93%,short-circuit current density(J_(sc))of 26.36 mA/cm 2,and open circuit voltage(V_(oc))of 0.610 V.Changing the above parameters individually while keeping others constant,the obtained optimal absorber thickness was 1.0μm,the interface defect density was 1010 cm-2,the temperature was 290 K,and the TiO 2 thickness was 0.01μm.On simulating with the optimized data,the fi nal device gave a PCE of 11.03%,FF of 50.78%,J_(sc) of 29.93 mA/cm 2,and V_(oc) of 0.726 V.Comparing the optimized and unoptimized metric parameters,an improvement of~32.10%in PCE,~13.41%in J_(sc),and~19.02%in V_(oc) were obtained.Therefore,the results of this study are encouraging and can pave the path for developing highly effi cient PSCs that are cost-eff ective,eco-friendly,and comparable to state-of-the-art.
文摘In order to improve the reliability of fault identification of the double-circuit transmission lines on the same tower, a new algorithm for fast protection of double-circuit transmission lines on the same tower based on the reactive powers of traveling wave is proposed. With the implementation of S-transform, the initial traveling wave reactive powers are calculated and the change characteristics of reactive power under different fault conditions are studied. The protection criterion is constructed by analyzing the ratio of the reactive powers of the same end on double-circuit transmission lines and the ratio of the reactive powers at both ends on the same line. According to the ratio of reactive power on the same side of the line and both ends of the same line, it is possible to identify whether the faults of the double-circuit line of the same tower occurred in or out of the protection zone. A large number of simulation results show that the protection performance is sensitive and reliable, and quick to respond. The criterion is simple and is basically not affected by fault initial angles, fault types, and transitional resistances.
基金supported by the National Natural Science Foundation of China-State Grid Joint Fund for Smart Grid (No. U2066210)。
文摘In view of the fact that the wavelet packet transform(WPT) can only weakly detect the occurrence of fault, this paper applies a fault diagnosis algorithm including wavelet packet transform and principal component analysis(PCA) to the inverter-side fault diagnosis of multi-terminal hybrid highvoltage direct current(HVDC) network, which can significantly improve the speed and accuracy of fault diagnosis. Firstly, current amplitude and current slope are used to sample the data,and the WPT is used to extract the energy spectrum of the signal. Secondly, an energy matrix is constructed, and the PCA method is used to calculate whether the squared prediction error(SPE) statistics of various signals that can reflect the degree of deviation of the measured value from the principal component model at a certain time exceed the limit to judge the occurrence of the fault. Further, its maximum value is compared to determine the fault types. Finally, based on a large number of MATLAB/Simulink simulation results, it is shown that the PCA method using the current slope as the sampled data can detect the occurrence of a ground fault with small transition resistance within 2 ms, and identify the fault types within 10 ms,without being affected by the sampling frequency.
文摘The increasing use of distributed energy resources changes the way to manage the electricity system.Unlike the traditional centralized powered utility,many homes and businesses with local electricity generators have established their own microgrids,which increases the use of renewable energy while introducing a new challenge to the management of the microgrid system from the mismatch and unknown of renewable energy generations,load demands,and dynamic electricity prices.To address this challenge,a rank-based multiple-choice secretary algorithm(RMSA)was proposed for microgrid management,to reduce the microgrid operating cost.Rather than relying on the complete information of future dynamic variables or accurate predictive approaches,a lightweight solution was used to make real-time decisions under uncertainties.The RMSA enables a microgrid to reduce the operating cost by determining the best electricity purchase timing for each task under dynamic pricing.Extensive experiments were conducted on real-world data sets to prove the efficacy of our solution in complex and divergent real-world scenarios.