Three-dimensional(3D)printing has gained popularity in a variety of applications,particularly in the manufacture of wearable devices.Aided by the large degree of freedom in customizable fabrication,3D printing can cat...Three-dimensional(3D)printing has gained popularity in a variety of applications,particularly in the manufacture of wearable devices.Aided by the large degree of freedom in customizable fabrication,3D printing can cater towards the practical requirements of wearable devices in terms of light weight and flexibility.In particular,this focus review aims to cover the important aspect of wearable energy storage devices(WESDs),which is an essential component of most wearable devices.Herein,the topics discussed are the fundamentals of 3D printing inks used,the optimizing strategies in improving the mechanical and electrochemical properties of wearable devices and the recent developments and challenges of wearable electrochemical systems such as batteries and supercapacitors.It can be expected that,with the development of 3D printing technology,realization of the full potential of WESDs and seamless integration into smart devices also needs further in-depth investigations.展开更多
Aqueous zinc-ion batteries(ZIBs)have attracted great research interest for use in large-scale energy storage devices due to their inherent safety,environmental friendliness,and low cost.Unfortunately,dendrite growth a...Aqueous zinc-ion batteries(ZIBs)have attracted great research interest for use in large-scale energy storage devices due to their inherent safety,environmental friendliness,and low cost.Unfortunately,dendrite growth and interfacial side reactions during the plating/stripping process triggered by uneven electric field distribution on the surface of the Zn anode seriously hinder the further development of aqueous ZIBs.Here,practical and inexpensive sodium tartrate(STA)is used as an electrolyte additive to construct a stable electrode-electrolyte interface,in which STA adsorbs preferentially on the Zn metal surface,contributing to promoting homogeneous Zn deposition.Moreover,STA interacts more strongly with Zn^(2+),which takes the place of the water molecules in the solvated shell and prevents the development of side reactions.In symmetrical cells and full cells,flat Zn anodes can therefore demonstrate remarkable cycle stability,opening the door for the development of cost-effective and effective electrolyte engineering techniques.展开更多
基金Australian Research Council,Grant/Award Numbers:DP190100120,FT200100015。
文摘Three-dimensional(3D)printing has gained popularity in a variety of applications,particularly in the manufacture of wearable devices.Aided by the large degree of freedom in customizable fabrication,3D printing can cater towards the practical requirements of wearable devices in terms of light weight and flexibility.In particular,this focus review aims to cover the important aspect of wearable energy storage devices(WESDs),which is an essential component of most wearable devices.Herein,the topics discussed are the fundamentals of 3D printing inks used,the optimizing strategies in improving the mechanical and electrochemical properties of wearable devices and the recent developments and challenges of wearable electrochemical systems such as batteries and supercapacitors.It can be expected that,with the development of 3D printing technology,realization of the full potential of WESDs and seamless integration into smart devices also needs further in-depth investigations.
基金supported by the National Natural Science Foundation of China(No.51871113)the Natural Science Foundation of Jiangsu Province(BK20200047).
文摘Aqueous zinc-ion batteries(ZIBs)have attracted great research interest for use in large-scale energy storage devices due to their inherent safety,environmental friendliness,and low cost.Unfortunately,dendrite growth and interfacial side reactions during the plating/stripping process triggered by uneven electric field distribution on the surface of the Zn anode seriously hinder the further development of aqueous ZIBs.Here,practical and inexpensive sodium tartrate(STA)is used as an electrolyte additive to construct a stable electrode-electrolyte interface,in which STA adsorbs preferentially on the Zn metal surface,contributing to promoting homogeneous Zn deposition.Moreover,STA interacts more strongly with Zn^(2+),which takes the place of the water molecules in the solvated shell and prevents the development of side reactions.In symmetrical cells and full cells,flat Zn anodes can therefore demonstrate remarkable cycle stability,opening the door for the development of cost-effective and effective electrolyte engineering techniques.