“Magnetic window”is considered as an effective method to solve the communication blackout issue.COMSOL software package based on the finite element method is utilized to simulate the propagation of right-handed circ...“Magnetic window”is considered as an effective method to solve the communication blackout issue.COMSOL software package based on the finite element method is utilized to simulate the propagation of right-handed circularly polarized wave in the magnetized plasma sheath.We assume a double Gaussian model of electron density and an exponential attenuation model of magnetic field.The propagation characteristics of right-handed circularly polarized wave are analyzed by the observation of the reflected,transmitted and loss coefficient.The numerical results show that the propagation of right-handed circularly polarized wave in the magnetized plasma sheath varies for different incident angles,collision frequencies,non-uniform magnetic fields and non-uniform plasma densities.We notice that reducing the wave frequency can meet the propagation conditions of whistle mode in the weak magnetized plasma sheath.And the transmittance of whistle mode is less affected by the variation of the electron density and the collision frequency.It can be used as a communication window.展开更多
During spacecraft re-entry,the challenge of measuring plasma sheath parameters directly contributes to difficulties in addressing communication blackout.In this work,we have discovered a phenomenon of multiple peaks i...During spacecraft re-entry,the challenge of measuring plasma sheath parameters directly contributes to difficulties in addressing communication blackout.In this work,we have discovered a phenomenon of multiple peaks in reflection data caused by the inhomogeneous plasma.Simulation results show that the multi-peak points fade away as the characteristic frequency is approached,resembling a series of gradually decreasing peaks.The positions and quantities of these points are positively correlated with electron density,yet they show no relation to collision frequency.This phenomenon is of significant reference value for future studies on the spatial distribution of plasmas,particularly for using microwave reflection signals in diagnosing the plasma sheath.展开更多
Blind source separation (BBS) technology was applied to vibration signal processing of gearbox for separating different fault vibration sources and enhancing fault information. An improved BSS algorithm based on parti...Blind source separation (BBS) technology was applied to vibration signal processing of gearbox for separating different fault vibration sources and enhancing fault information. An improved BSS algorithm based on particle swarm optimization (PSO) was proposed. It can change the traditional fault-enhancing thought based on de-noising. And it can also solve the practical difficult problem of fault location and low fault diagnosis rate in early stage. It was applied to the vibration signal of gearbox under three working states. The result proves that the BSS greatly enhances fault information and supplies technological method for diagnosis of weak fault.展开更多
Loess landslides are one of the geological hazards prevalent in mountainous areas of Loess Plateau,seriously threatening people's lives and property safety.Accurate identification of landslides is a prerequisite f...Loess landslides are one of the geological hazards prevalent in mountainous areas of Loess Plateau,seriously threatening people's lives and property safety.Accurate identification of landslides is a prerequisite for reducing the risk of landslide hazards.Traditional landslide interpretation methods often have the disadvantage of being laborious and difficult to use on a large scale compared with the recently developed deep learning-based landslide detection methods.In this study,we propose an improved deep learning model,landslide detectionyou only look once(LD-YOLO),based on the existing you only look once(YOLO)model for the intelligent identification of old and new landslides in loess areas.Specifically,remote sensing images of landslides in Baoji City,Shaanxi Province,China are acquired from the Google Earth Engine platform.The landslide images of Baoji City(excluding Qianyang County)are used to establish a loess landslide dataset for training the model.The landslide data of Qianyang County is used to verify the detection performance of the model.The focal and efficient IoU(Focal-EIoU)loss function and efficient channel attention(ECA)mechanism are incorporated into the 7th version of YOLO(YOLOv7)model to construct the LD-YOLO model,which makes it more suitable for the landslide detection task.The experiments yielded an improved LD-YOLO model with average precision of 92.05%,precision of 92.31%,recall of 90.28%,and F1-score of 91.28%for loess landslide detection.The landslides in Qianyang County were divided into two test sets,new landslides and old landslides,which were used to test the detection performance of LD-YOLO for both types of landslides.The results show that LD-YOLO detects old landslides with a detection precision of 82.75%and a recall of 80%.When detecting new landslides,the detection precision is 94.29%and the recall is 91.67%.It indicates that our proposed LD-YOLO model has strong detection performance for both new and old landslides in loess areas.Through a proposed solution that can realize the accurate detection of landslides in loess areas,this paper provides a valuable reference for the application of deep learning methods in landslide identification.展开更多
This paper aims to explore the effects of a rotating plasma-activated liquid on the dynamic propagation and biomedical application of a helium plasma jet.The spatial distribution of reactive species and the associated...This paper aims to explore the effects of a rotating plasma-activated liquid on the dynamic propagation and biomedical application of a helium plasma jet.The spatial distribution of reactive species and the associated physico-chemical reactions are altered by the rotating liquid,which shows a significant weakening in the axial propagation of the plasma bullet and a strengthening in its radial expansion at the liquid surface.The phenomenon is prompted by the nonzero rotational velocity of the liquid and is regulated by airflow,target distance and liquid permittivity.The concentrations of aqueous reactive species,especially OH and O~-,and the inactivation effectiveness on cancer cells are weakened,indicating that a rotating liquid is not conducive to water treatment of the plasma jet although the treatment area of the plasma jet increases dynamically.This finding is of significance for the plasma–liquid interaction and the biomedical-related applications of plasma jets.展开更多
A plasma-based stable,ultra-wideband electromagnetic(EM) wave absorber structure is studied in this paper for stealth applications.The stability is maintained by a multi-layer structure with several plasma layers an...A plasma-based stable,ultra-wideband electromagnetic(EM) wave absorber structure is studied in this paper for stealth applications.The stability is maintained by a multi-layer structure with several plasma layers and dielectric layers distributed alternately.The plasma in each plasma layer is designed to be uniform,whereas it has a discrete nonuniform distribution from the overall view of the structure.The nonuniform distribution of the plasma is the key to obtaining ultra-wideband wave absorption.A discrete Epstein distribution model is put forward to constrain the nonuniform electron density of the plasma layers,by which the wave absorption range is extended to the ultra-wideband.Then,the scattering matrix method(SMM) is employed to analyze the electromagnetic reflection and absorption of the absorber structure.In the simulation,the validation of the proposed structure and model in ultra-wideband EM wave absorption is first illustrated by comparing the nonuniform plasma model with the uniform case.Then,the influence of various parameters on the EM wave reflection of the plasma are simulated and analyzed in detail,verifying the EM wave absorption performance of the absorber.The proposed structure and model are expected to be superior in some realistic applications,such as supersonic aircraft.展开更多
Energy dissipation and power deposition of electromagnetic waves(EMW)in the reentry plasma sheath provide an opportunity to investigate‘communication blackout’phenomena.Based on afinite element method(FEM)simulation...Energy dissipation and power deposition of electromagnetic waves(EMW)in the reentry plasma sheath provide an opportunity to investigate‘communication blackout’phenomena.Based on afinite element method(FEM)simulation,we analyze variation of EMW energy dissipation and power deposition profiles dependent on the wave polarization,wave incident angle,plasma density profile and electron collision frequency.Cutoff and resonance of EMW in the plasma sheath are crucial in explaining the regulation of energy dissipation and power deposition.展开更多
When an aircraft or a hypersonic vehicle re-enters the atmosphere,the plasma sheath generated can severely attenuate electromagnetic wave signals,causing the problem of communication blackout.A new method based on tim...When an aircraft or a hypersonic vehicle re-enters the atmosphere,the plasma sheath generated can severely attenuate electromagnetic wave signals,causing the problem of communication blackout.A new method based on time-varying E×B fields is proposed to improve on the existing static E×B fields and mitigate the radio blackout problem.The use of the existing method is limited by the invalid electron density reduction resulting from current density j=0 A m^(-2)in plasma beyond the Debye radius.The most remarkable feature is the introduction of a time-varying electric field to increase the current density in the plasma to overcome the Debye shielding effect on static electric field.Meanwhile,a magnetic field with the same frequency and phase as the electric field is applied to ensure that the electromagnetic force is always acting on the plasma in one direction.In order to investigate the effect of time-varying E×B fields on the plasma electron density distribution,two directions of voltage application are considered in numerical simulation.The simulation results indicate that different voltage application methods generate electromagnetic forces in different directions in the plasma,resulting in repulsion and vortex effects in the plasma.A comparison of the vortex effect and repulsion effect reveals that the vortex effect is better at reducing the electron density.The local plasma electron density can be reduced by more than 80%through the vortex effect,and the dimensions of the area of reduced electron density reach approximately 6 cm×4 cm,meeting the requirements of electromagnetic wave propagation.Besides,the vortex effect of reducing the electron density in RAM-C(radio attenuation measurements for the study of communication blackout)reentry at an altitude of 40 km is analyzed.On the basis of the simulation results,an experiment based on a rectangular-window discharge device is proposed to demonstrate the effectiveness of the vortex effect.Experimental results show that time-varying E×B fields can reduce the electron density in plasma of 3 cm thickness by 80%at B=0.07 T and U_(0)=1000 V.The investigations confirm the effectiveness of the proposed method in terms of reducing the required strength of the magnetic field and overcoming the Debye shielding effect.Additionally,the method is expected to provide a new way to apply a magnetic window in engineering applications.展开更多
A non-contact low-frequency(LF)method of diagnosing the plasma surrounding a scaled model in a shock tube is proposed.This method utilizes the phase shift occurring after the transmission of an LF alternating magnetic...A non-contact low-frequency(LF)method of diagnosing the plasma surrounding a scaled model in a shock tube is proposed.This method utilizes the phase shift occurring after the transmission of an LF alternating magnetic field through the plasma to directly measure the ratio of the plasma loop average electron density to collision frequency.An equivalent circuit model is used to analyze the relationship of the phase shift of the magnetic field component of LF electromagnetic waves with the plasma electron density and collision frequency.The applicable range of the LF method on a given plasma scale is analyzed.The upper diagnostic limit for the ratio of the electron density(unit:m^(-3))to collision frequency(unit:Hz)exceeds 1×10^(11),enabling an electron density to exceed 1×10^(20)m^(-3)and a collision frequency to be less than 1 GHz.In this work,the feasibility of using the LF phase shift to implement the plasma diagnosis is also assessed.Diagnosis experiments on shock tube equipment are conducted by using both the electrostatic probe method and LF method.By comparing the diagnostic results of the two methods,the inversion results are relatively consistent with each other,thereby preliminarily verifying the feasibility of the LF method.The ratio of the electron density to the collision frequency has a relatively uniform distribution during the plasma stabilization.The LF diagnostic path is a loop around the model,which is suitable for diagnosing the plasma that surrounds the model.Finally,the causes of diagnostic discrepancy between the two methods are analyzed.The proposed method provides a new avenue for diagnosing high-density enveloping plasma.展开更多
Reduction of the radar cross-section(RCS) is the key to stealth technology. To improve the RCS reduction effect of the designed checkerboard metasurface and overcome the limitation of thinlayer plasma in RCS reduction...Reduction of the radar cross-section(RCS) is the key to stealth technology. To improve the RCS reduction effect of the designed checkerboard metasurface and overcome the limitation of thinlayer plasma in RCS reduction technology, a double-layer-plasma-based metasurface—composed of a checkerboard metasurface, a double-layer plasma and an air gap between them—was investigated. Based on the principle of backscattering cancellation, we designed a checkerboard metasurface composed of different artificial magnetic conductor units;the checkerboard metasurface can reflect vertically incident electromagnetic(EM) waves in four different inclined directions to reduce the RCS. Full-wave simulations confirm that the doublelayer-plasma-based metasurface can improve the RCS reduction effect of the metasurface and the plasma. This is because in a band lower than the working band of the metasurface, the RCS reduction effect is mainly improved by the plasma layer. In the working band of the metasurface,impedance mismatching between the air gap and first plasma layer and between first and second plasma layers cause the scattered waves to become more dispersed, so the propagation path of the EM waves in the plasma becomes longer, increasing the absorption of the EM waves by the plasma. Thus, the RCS reduction effect is enhanced. The double-layer-plasma-based metasurface can be insensitive to the polarization of the incoming EM waves, and can also maintain a satisfactory RCS reduction band when the incident waves are oblique.展开更多
In numerical simulations of the ion cyclotron range of frequencies(ICRF)wave heating scheme,core solvers usually focus on wave propagation and absorption mechanisms within the core plasma region.However,the realistic ...In numerical simulations of the ion cyclotron range of frequencies(ICRF)wave heating scheme,core solvers usually focus on wave propagation and absorption mechanisms within the core plasma region.However,the realistic scrape-off layer(SOL)plasma is usually simplified,making it difficult to have deeper understanding of wave propagation and absorption within the SOL.In this work,we employ a cold plasma assumption and an artificial absorption mechanism based on the approach of reference(Zhang et al 2022 Nucl.Fusion 62076032),to study wave propagation and absorption in the realistic SOL plasma of the EAST.During the exponential decay of the total coupled power with respect to the toroidal mode numbers,several fluctuations are observed in the case of low collisional frequencies.The fluctuations may be caused by the cavity modes associated with specific toroidal mode numbers.Due to the presence of cut-off densities,the edge power losses and the total coupled power exhibit different behaviors before and after the cut-off layer is“open”.Furthermore,the simulation results obtained from the kinetic model in reference(Zhang et al 2022 Nucl.Fusion 62076032)is discussed.This suggests that both the core-edge combined model and the artificial mechanism are capable of simulating wave propagation and absorption.展开更多
At present,simultaneous localization and mapping(SLAM) for an autonomous underwater vehicle(AUV)is a research hotspot.Aiming at the problem of non-linear model and non-Gaussian noise in AUV motion,an improved method o...At present,simultaneous localization and mapping(SLAM) for an autonomous underwater vehicle(AUV)is a research hotspot.Aiming at the problem of non-linear model and non-Gaussian noise in AUV motion,an improved method of variance reduction fast simultaneous localization and mapping(FastSLAM) with simulated annealing is proposed to solve the problems of particle degradation,particle depletion and particle loss in traditional FastSLAM,which lead to the reduction of AUV location estimation accuracy.The adaptive exponential fading factor is generated by the anneal function of simulated annealing algorithm to improve the effective particle number and replace resampling.By increasing the weight of small particles and decreasing the weight of large particles,the variance of particle weight can be reduced,the number of effective particles can be increased,and the accuracy of AUV location and feature location estimation can be improved to some extent by retaining more information carried by particles.The experimental results based on trial data show that the proposed simulated annealing variance reduction FastSLAM method avoids particle degradation,maintains the diversity of particles,weakened the degeneracy and improves the accuracy and stability of AUV navigation and localization system.展开更多
To improve the link efficiency and decrease the payloads in space explorations, a novel simultaneous communication and ranging method based on x-ray communication(XCOM) is proposed in this paper. A delicate signal s...To improve the link efficiency and decrease the payloads in space explorations, a novel simultaneous communication and ranging method based on x-ray communication(XCOM) is proposed in this paper. A delicate signal symbol structure is utilized to achieve simultaneous data transmission and range measurement. With the designed symbol structure, the ranging information is imbedded into the communication signal and transmitted with it simultaneously. The range measurement is realized by the two-way transmission of the range information. To illustrate the proposed method, firstly, the principle of the method is introduced and the signal processing procedure is presented. Then, the performance of the proposed method is analyzed theoretically in various aspects, including the acquisition probability, the bit error rate, the ranging jitter,etc. Besides, numerical experiments are conducted to verify the proposed method and evaluate the system performance.The simulation results show that the proposed method is feasible and that the system performance is influenced by the parameters concerning the signal symbol structure. Compared with the previous methods, the proposed method improves the link efficiency and is beneficial for system miniaturization and integration, which could provide a potential option for future deep space explorations.展开更多
A good method of synthesizing Ti_(3)C_(2)T_(x)(MXene)is critical for ensuring its success in practical applications,e.g.,electromagnetic interference shielding,electrochemical energy storage,catalysis,sensors,and biom...A good method of synthesizing Ti_(3)C_(2)T_(x)(MXene)is critical for ensuring its success in practical applications,e.g.,electromagnetic interference shielding,electrochemical energy storage,catalysis,sensors,and biomedicine.The main concerns focus on the moderation of the approach,yield,and product quality.Herein,a modified approach,organic solvent-assisted intercalation and collection,was developed to prepare Ti_(3)C_(2)T_(x) flakes.The new approach simultaneously solves all the concerns,featuring a low requirement for facility(centrifugation speed<4000 rpm in whole process),gram-level preparation with remarkable yield(46.3%),a good electrical conductivity(8672 S cm^(−1)),an outstanding capacitive performance(352 F g^(−1)),and easy control over the dimension of Ti_(3)C_(2)T_(x) flakes(0.47–4.60μm^(2)).This approach not only gives a superb example for the synthesis of other MXene materials in laboratory,but sheds new light for the future mass production of Ti_(3)C_(2)T_(x) MXene.展开更多
The fabrication process dependent effects on single event effects (SEEs) are investigated in a commercial silicon- germanium heterojunction bipolar transistor (SiGe HBT) using three-dimensional (3D) TCAD simulat...The fabrication process dependent effects on single event effects (SEEs) are investigated in a commercial silicon- germanium heterojunction bipolar transistor (SiGe HBT) using three-dimensional (3D) TCAD simulations. The influences of device structure and doping concentration on SEEs are discussed via analysis of current transient and charge collection induced by ions strike. The results show that the SEEs representation of current transient is different from representation of the charge collection for the same process parameters. To be specific, the area of C/S junction is the key parameter that affects charge collection of SEE. Both current transient and charge collection are dependent on the doping of collector and substrate. The base doping slightly influences transient currents of base, emitter, and collector terminals. However, the SEEs of SiGe HBT are hardly affected by the doping of epitaxial base and the content of Ge.展开更多
The plasma sheath can induce radar signal modulation,causing not only ineffective target detection,but also defocusing in inverse synthetic aperture radar(ISAR)imaging.In this paper,through establishing radar echo mod...The plasma sheath can induce radar signal modulation,causing not only ineffective target detection,but also defocusing in inverse synthetic aperture radar(ISAR)imaging.In this paper,through establishing radar echo models of the reentry object enveloped with time-varying plasma sheath,we simulated the defocusing of ISAR images in typical environment.Simulation results suggested that the ISAR defocusing is caused by false scatterings,upon which the false scatterings’formation mechanism and distribution property are analyzed and studied.The range of false scattering correlates with the electron density fluctuation frequency.The combined value of the electron density fluctuation and the pulse repetition frequency jointly determines the Doppler of false scattering.Two measurement metrics including peak signal-to-noise ratio and structural similarity are used to evaluate the influence of ISAR imaging.展开更多
In this paper, a novel solution mitigating the radio blackout problem is proposed, which improves existing traveling magnetic field(TMF)-based methods. The most significant advance lies in replacing the external injec...In this paper, a novel solution mitigating the radio blackout problem is proposed, which improves existing traveling magnetic field(TMF)-based methods. The most significant advance lies in replacing the external injection with self-induced current, which does not require electrodes. The improved analytical model is derived to evaluate the electron density reduction taking into consideration the self-induced current for various TMF velocities. The plasma reduction performance is analyzed for several conditions including the total absence of injected current. The results show that the velocity may be used to trade off the injected current and, when sufficiently large, eliminates the need for an injected current while mitigating radio blackout. The effectiveness of this solution to the blackout problem is demonstrated in commonly used aerospace communication bands. With a field strength of less than 0.15 T, increasing the velocity from40 m s^-1 to 3100 m s^-1 is all that is required to obviate the need for an injected current. Moreover,typical reduction ratios for electronic density tolerance(2, 1.9, 1.75 and 3 times for the L-, S-, Cand X-bands, respectively, at an altitude of 40 km) remain unchanged. Increasing the velocity of the TMF is much easier than injecting current via a metal electrode into a high-temperature flow field. The TMF method appears practical in regard to possible future applications.展开更多
For reentry communication,owing to the influence of the highly dynamic plasma sheath(PS),the parasitic modulation effect can occur and the received phase shift keying(PSK)signal constellation can be severely rotated,l...For reentry communication,owing to the influence of the highly dynamic plasma sheath(PS),the parasitic modulation effect can occur and the received phase shift keying(PSK)signal constellation can be severely rotated,leading to unacceptable demodulation performance degradation.In this work,an adaptive non-coherent bit-interleaved coded modulation with iterative decoding(BICM-ID)system with binary PSK(BPSK)modulation and protograph lowdensity parity-check under the PS channel is proposed.The proposed protograph-based BICMID(P-BICM-ID)system can achieve joint processing of demodulation and decoding,where the soft information is adaptively estimated by reversible-jump Markov chain Monte Carlo(RJMCMC)algorithms.Simulation results indicate that compared to existing algorithms,the proposed system can adapt well to the dynamic characteristics of the PS channel and can obtain a 5dB performance improvement at a bit error rate of 10^(-6).展开更多
In this work,microwaves and terahertz waves have performed a dual-frequency combineddiagnosis in high-temperature,large-scale plasma.According to the attenuation and phase shift of electromagnetic waves in the plasma,...In this work,microwaves and terahertz waves have performed a dual-frequency combineddiagnosis in high-temperature,large-scale plasma.According to the attenuation and phase shift of electromagnetic waves in the plasma,the electron density and collision frequency of theplasma can be inversely calculated.However,when the plasma size is large and the electron density is high,the phase shift of the electromagnetic wave is large(multiple times 2πperiod).Due to the limitations of the test equipment,the true phase shift is difficult to test accurately or to recover reality.That is,there is a problem of phase integer ambiguity.In order to obtain a phase shift of less than 180°,a higher electromagnetic wave frequency(terahertz wave with 890 GHz)is used for diagnosis.However,the attenuation of the terahertz wave diagnosis is too small(less than 0.1 d B),only the electron density can be obtained,and the collision frequency cannot be accurately obtained.Therefore,a combined diagnosis was carried out by combining twofrequencies(microwave with 36 GHz,terahertz wave with 890 GHz)to obtain electron density and collision frequency.The diagnosis result shows that the electron density is in the range of(0.65–1.5)×1019m^(-3),the collision frequency is in the range of 0.65–2 GHz,and the diagnostic accuracy is about 60%.展开更多
In X-ray pulsar-based navigation, strong X-ray background noise leads to a low signal-to-noise ratio(SNR) of the observed profile, which consequently makes it very difficult to obtain an accurate pulse phase that di...In X-ray pulsar-based navigation, strong X-ray background noise leads to a low signal-to-noise ratio(SNR) of the observed profile, which consequently makes it very difficult to obtain an accurate pulse phase that directly determines the navigation precision. This signifies the necessity of denoising of the observed profile. Considering that the ultimate goal of denoising is to enhance the pulse phase estimation, a profile denoising algorithm is proposed by fusing the biorthogonal lifting wavelet transform of the linear phase characteristic with the thresholding technique. The statistical properties of X-ray background noise after epoch folding are studied. Then a wavelet-scale dependent threshold is introduced to overcome correlations between wavelet coefficients. Moreover, a modified hyperbola shrinking function is presented to remove the impulsive oscillations of the observed profile. The results of numerical simulations and real data experiments indicate that the proposed method can effectively improve SNR of the observed profile and pulse phase estimation accuracy, especially in short observation durations. And it also outperforms the Donoho thresholding strategy normally used in combination with the orthogonal discrete wavelet transform.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12275202,62371372,62101406,and 62001340)China Postdoctoral Science Foundation(Grant Nos.2022M71490 and 2020M673341)+1 种基金the Innovation Capability Support Program of Shaanxi Province,China(Grant No.2022TD-37)the Natural Science Basic Research Program of Shaanxi Province,China(Grant No.2023JC-YB-549)。
文摘“Magnetic window”is considered as an effective method to solve the communication blackout issue.COMSOL software package based on the finite element method is utilized to simulate the propagation of right-handed circularly polarized wave in the magnetized plasma sheath.We assume a double Gaussian model of electron density and an exponential attenuation model of magnetic field.The propagation characteristics of right-handed circularly polarized wave are analyzed by the observation of the reflected,transmitted and loss coefficient.The numerical results show that the propagation of right-handed circularly polarized wave in the magnetized plasma sheath varies for different incident angles,collision frequencies,non-uniform magnetic fields and non-uniform plasma densities.We notice that reducing the wave frequency can meet the propagation conditions of whistle mode in the weak magnetized plasma sheath.And the transmittance of whistle mode is less affected by the variation of the electron density and the collision frequency.It can be used as a communication window.
文摘During spacecraft re-entry,the challenge of measuring plasma sheath parameters directly contributes to difficulties in addressing communication blackout.In this work,we have discovered a phenomenon of multiple peaks in reflection data caused by the inhomogeneous plasma.Simulation results show that the multi-peak points fade away as the characteristic frequency is approached,resembling a series of gradually decreasing peaks.The positions and quantities of these points are positively correlated with electron density,yet they show no relation to collision frequency.This phenomenon is of significant reference value for future studies on the spatial distribution of plasmas,particularly for using microwave reflection signals in diagnosing the plasma sheath.
基金Project(50875247) supported by the National Natural Science Foundation of ChinaProject(2007011070) supported by the Natural Science Foundation of Shanxi Province, China
文摘Blind source separation (BBS) technology was applied to vibration signal processing of gearbox for separating different fault vibration sources and enhancing fault information. An improved BSS algorithm based on particle swarm optimization (PSO) was proposed. It can change the traditional fault-enhancing thought based on de-noising. And it can also solve the practical difficult problem of fault location and low fault diagnosis rate in early stage. It was applied to the vibration signal of gearbox under three working states. The result proves that the BSS greatly enhances fault information and supplies technological method for diagnosis of weak fault.
基金the Huainan Normal University Natural Science Research(Grants No.2022XJYB034)the Fundamental Research Funds for the Central Universities,CHD(Grants No.300102352506)the Natural Science Foundation of Anhui Colleges(Grants No.KJ2020A0313)。
文摘Loess landslides are one of the geological hazards prevalent in mountainous areas of Loess Plateau,seriously threatening people's lives and property safety.Accurate identification of landslides is a prerequisite for reducing the risk of landslide hazards.Traditional landslide interpretation methods often have the disadvantage of being laborious and difficult to use on a large scale compared with the recently developed deep learning-based landslide detection methods.In this study,we propose an improved deep learning model,landslide detectionyou only look once(LD-YOLO),based on the existing you only look once(YOLO)model for the intelligent identification of old and new landslides in loess areas.Specifically,remote sensing images of landslides in Baoji City,Shaanxi Province,China are acquired from the Google Earth Engine platform.The landslide images of Baoji City(excluding Qianyang County)are used to establish a loess landslide dataset for training the model.The landslide data of Qianyang County is used to verify the detection performance of the model.The focal and efficient IoU(Focal-EIoU)loss function and efficient channel attention(ECA)mechanism are incorporated into the 7th version of YOLO(YOLOv7)model to construct the LD-YOLO model,which makes it more suitable for the landslide detection task.The experiments yielded an improved LD-YOLO model with average precision of 92.05%,precision of 92.31%,recall of 90.28%,and F1-score of 91.28%for loess landslide detection.The landslides in Qianyang County were divided into two test sets,new landslides and old landslides,which were used to test the detection performance of LD-YOLO for both types of landslides.The results show that LD-YOLO detects old landslides with a detection precision of 82.75%and a recall of 80%.When detecting new landslides,the detection precision is 94.29%and the recall is 91.67%.It indicates that our proposed LD-YOLO model has strong detection performance for both new and old landslides in loess areas.Through a proposed solution that can realize the accurate detection of landslides in loess areas,this paper provides a valuable reference for the application of deep learning methods in landslide identification.
基金supported by National Natural Science Foundation of China(No.52107162)the Science and Technology Projects of Shaanxi Province(No.2022CGBX12)the Science and Technology Projects of Xi’an City(No.2021SFCX0005)。
文摘This paper aims to explore the effects of a rotating plasma-activated liquid on the dynamic propagation and biomedical application of a helium plasma jet.The spatial distribution of reactive species and the associated physico-chemical reactions are altered by the rotating liquid,which shows a significant weakening in the axial propagation of the plasma bullet and a strengthening in its radial expansion at the liquid surface.The phenomenon is prompted by the nonzero rotational velocity of the liquid and is regulated by airflow,target distance and liquid permittivity.The concentrations of aqueous reactive species,especially OH and O~-,and the inactivation effectiveness on cancer cells are weakened,indicating that a rotating liquid is not conducive to water treatment of the plasma jet although the treatment area of the plasma jet increases dynamically.This finding is of significance for the plasma–liquid interaction and the biomedical-related applications of plasma jets.
基金supported in part by the National Basic Research Program of China (grant no.2014CB340205)in part by the Science and Technology on Space Physics Laboratory Fundsin part by the Fundamental Research Funds for the Central Universities (20101156180)
文摘A plasma-based stable,ultra-wideband electromagnetic(EM) wave absorber structure is studied in this paper for stealth applications.The stability is maintained by a multi-layer structure with several plasma layers and dielectric layers distributed alternately.The plasma in each plasma layer is designed to be uniform,whereas it has a discrete nonuniform distribution from the overall view of the structure.The nonuniform distribution of the plasma is the key to obtaining ultra-wideband wave absorption.A discrete Epstein distribution model is put forward to constrain the nonuniform electron density of the plasma layers,by which the wave absorption range is extended to the ultra-wideband.Then,the scattering matrix method(SMM) is employed to analyze the electromagnetic reflection and absorption of the absorber structure.In the simulation,the validation of the proposed structure and model in ultra-wideband EM wave absorption is first illustrated by comparing the nonuniform plasma model with the uniform case.Then,the influence of various parameters on the EM wave reflection of the plasma are simulated and analyzed in detail,verifying the EM wave absorption performance of the absorber.The proposed structure and model are expected to be superior in some realistic applications,such as supersonic aircraft.
基金funded by National Natural Science Foundation of China(Nos.61627901 and 61871302)the Shaanxi National Natural Science Foundation under Grant No.2019JZ-15
文摘Energy dissipation and power deposition of electromagnetic waves(EMW)in the reentry plasma sheath provide an opportunity to investigate‘communication blackout’phenomena.Based on afinite element method(FEM)simulation,we analyze variation of EMW energy dissipation and power deposition profiles dependent on the wave polarization,wave incident angle,plasma density profile and electron collision frequency.Cutoff and resonance of EMW in the plasma sheath are crucial in explaining the regulation of energy dissipation and power deposition.
基金supported by the Research Foundation for Advanced Talents of Henan University of Technology(No.31401482)National Natural Science Foundation of China(No.52107162)+2 种基金the Research Foundation for University Key Teacher of Henan Province(No.2020GGJS084)the Research Foundation for Key Teacher of Henan University of Technologythe Foundation of Henan Science and Technology Agency(No.222102210186)。
文摘When an aircraft or a hypersonic vehicle re-enters the atmosphere,the plasma sheath generated can severely attenuate electromagnetic wave signals,causing the problem of communication blackout.A new method based on time-varying E×B fields is proposed to improve on the existing static E×B fields and mitigate the radio blackout problem.The use of the existing method is limited by the invalid electron density reduction resulting from current density j=0 A m^(-2)in plasma beyond the Debye radius.The most remarkable feature is the introduction of a time-varying electric field to increase the current density in the plasma to overcome the Debye shielding effect on static electric field.Meanwhile,a magnetic field with the same frequency and phase as the electric field is applied to ensure that the electromagnetic force is always acting on the plasma in one direction.In order to investigate the effect of time-varying E×B fields on the plasma electron density distribution,two directions of voltage application are considered in numerical simulation.The simulation results indicate that different voltage application methods generate electromagnetic forces in different directions in the plasma,resulting in repulsion and vortex effects in the plasma.A comparison of the vortex effect and repulsion effect reveals that the vortex effect is better at reducing the electron density.The local plasma electron density can be reduced by more than 80%through the vortex effect,and the dimensions of the area of reduced electron density reach approximately 6 cm×4 cm,meeting the requirements of electromagnetic wave propagation.Besides,the vortex effect of reducing the electron density in RAM-C(radio attenuation measurements for the study of communication blackout)reentry at an altitude of 40 km is analyzed.On the basis of the simulation results,an experiment based on a rectangular-window discharge device is proposed to demonstrate the effectiveness of the vortex effect.Experimental results show that time-varying E×B fields can reduce the electron density in plasma of 3 cm thickness by 80%at B=0.07 T and U_(0)=1000 V.The investigations confirm the effectiveness of the proposed method in terms of reducing the required strength of the magnetic field and overcoming the Debye shielding effect.Additionally,the method is expected to provide a new way to apply a magnetic window in engineering applications.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.52107162 and 12202479)the Science and Technology Projects of Shaanxi Province,China(Grant Nos.2022CGBX-12 and 2022KXJ-57)the Science and Technology Projects of Xi’an City,China(Grant Nos.23KGDW0023-2022 and 23GXFW0011)。
文摘A non-contact low-frequency(LF)method of diagnosing the plasma surrounding a scaled model in a shock tube is proposed.This method utilizes the phase shift occurring after the transmission of an LF alternating magnetic field through the plasma to directly measure the ratio of the plasma loop average electron density to collision frequency.An equivalent circuit model is used to analyze the relationship of the phase shift of the magnetic field component of LF electromagnetic waves with the plasma electron density and collision frequency.The applicable range of the LF method on a given plasma scale is analyzed.The upper diagnostic limit for the ratio of the electron density(unit:m^(-3))to collision frequency(unit:Hz)exceeds 1×10^(11),enabling an electron density to exceed 1×10^(20)m^(-3)and a collision frequency to be less than 1 GHz.In this work,the feasibility of using the LF phase shift to implement the plasma diagnosis is also assessed.Diagnosis experiments on shock tube equipment are conducted by using both the electrostatic probe method and LF method.By comparing the diagnostic results of the two methods,the inversion results are relatively consistent with each other,thereby preliminarily verifying the feasibility of the LF method.The ratio of the electron density to the collision frequency has a relatively uniform distribution during the plasma stabilization.The LF diagnostic path is a loop around the model,which is suitable for diagnosing the plasma that surrounds the model.Finally,the causes of diagnostic discrepancy between the two methods are analyzed.The proposed method provides a new avenue for diagnosing high-density enveloping plasma.
基金supported in part by the China Postdoctoral Science Foundation (No. 2020M673341)in part by the Natural Science Basic Research Program of Shaanxi (No.2023-JC-YB-549)+1 种基金in part by National Natural Science Foundation of China (Nos. 62371375 and 62371372)Innovation Capability Support Program of Shaanxi (No. 2022TD-37)。
文摘Reduction of the radar cross-section(RCS) is the key to stealth technology. To improve the RCS reduction effect of the designed checkerboard metasurface and overcome the limitation of thinlayer plasma in RCS reduction technology, a double-layer-plasma-based metasurface—composed of a checkerboard metasurface, a double-layer plasma and an air gap between them—was investigated. Based on the principle of backscattering cancellation, we designed a checkerboard metasurface composed of different artificial magnetic conductor units;the checkerboard metasurface can reflect vertically incident electromagnetic(EM) waves in four different inclined directions to reduce the RCS. Full-wave simulations confirm that the doublelayer-plasma-based metasurface can improve the RCS reduction effect of the metasurface and the plasma. This is because in a band lower than the working band of the metasurface, the RCS reduction effect is mainly improved by the plasma layer. In the working band of the metasurface,impedance mismatching between the air gap and first plasma layer and between first and second plasma layers cause the scattered waves to become more dispersed, so the propagation path of the EM waves in the plasma becomes longer, increasing the absorption of the EM waves by the plasma. Thus, the RCS reduction effect is enhanced. The double-layer-plasma-based metasurface can be insensitive to the polarization of the incoming EM waves, and can also maintain a satisfactory RCS reduction band when the incident waves are oblique.
基金supported by the National Key R&D Program of China(No.2022YFE03090000)the China Postdoctoral Science Foundation(No.2022M71490)+1 种基金National Natural Science Foundation of China(Nos.11925501 and 12275202)the Fundament Research Funds for the Central Universities(No.DUT22ZD215)。
文摘In numerical simulations of the ion cyclotron range of frequencies(ICRF)wave heating scheme,core solvers usually focus on wave propagation and absorption mechanisms within the core plasma region.However,the realistic scrape-off layer(SOL)plasma is usually simplified,making it difficult to have deeper understanding of wave propagation and absorption within the SOL.In this work,we employ a cold plasma assumption and an artificial absorption mechanism based on the approach of reference(Zhang et al 2022 Nucl.Fusion 62076032),to study wave propagation and absorption in the realistic SOL plasma of the EAST.During the exponential decay of the total coupled power with respect to the toroidal mode numbers,several fluctuations are observed in the case of low collisional frequencies.The fluctuations may be caused by the cavity modes associated with specific toroidal mode numbers.Due to the presence of cut-off densities,the edge power losses and the total coupled power exhibit different behaviors before and after the cut-off layer is“open”.Furthermore,the simulation results obtained from the kinetic model in reference(Zhang et al 2022 Nucl.Fusion 62076032)is discussed.This suggests that both the core-edge combined model and the artificial mechanism are capable of simulating wave propagation and absorption.
基金supported by the National Science Fund of China under Grants 61603034China Postdoctoral Science Foundation under Grant 2019M653870XB+1 种基金Beijing Municipal Natural Science Foundation (3182027)Fundamental Research Funds for the Central Universities,China,FRF-GF-17-B44,and XJS191315
文摘At present,simultaneous localization and mapping(SLAM) for an autonomous underwater vehicle(AUV)is a research hotspot.Aiming at the problem of non-linear model and non-Gaussian noise in AUV motion,an improved method of variance reduction fast simultaneous localization and mapping(FastSLAM) with simulated annealing is proposed to solve the problems of particle degradation,particle depletion and particle loss in traditional FastSLAM,which lead to the reduction of AUV location estimation accuracy.The adaptive exponential fading factor is generated by the anneal function of simulated annealing algorithm to improve the effective particle number and replace resampling.By increasing the weight of small particles and decreasing the weight of large particles,the variance of particle weight can be reduced,the number of effective particles can be increased,and the accuracy of AUV location and feature location estimation can be improved to some extent by retaining more information carried by particles.The experimental results based on trial data show that the proposed simulated annealing variance reduction FastSLAM method avoids particle degradation,maintains the diversity of particles,weakened the degeneracy and improves the accuracy and stability of AUV navigation and localization system.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61172138 and 61401340)the Research Fund for the Doctoral Program of Higher Education of China(Grant No.20130203120004)the Fundamental Research Funds for the Central Universities,China(Grant Nos.201413B,201412B,and JB141303)
文摘To improve the link efficiency and decrease the payloads in space explorations, a novel simultaneous communication and ranging method based on x-ray communication(XCOM) is proposed in this paper. A delicate signal symbol structure is utilized to achieve simultaneous data transmission and range measurement. With the designed symbol structure, the ranging information is imbedded into the communication signal and transmitted with it simultaneously. The range measurement is realized by the two-way transmission of the range information. To illustrate the proposed method, firstly, the principle of the method is introduced and the signal processing procedure is presented. Then, the performance of the proposed method is analyzed theoretically in various aspects, including the acquisition probability, the bit error rate, the ranging jitter,etc. Besides, numerical experiments are conducted to verify the proposed method and evaluate the system performance.The simulation results show that the proposed method is feasible and that the system performance is influenced by the parameters concerning the signal symbol structure. Compared with the previous methods, the proposed method improves the link efficiency and is beneficial for system miniaturization and integration, which could provide a potential option for future deep space explorations.
基金This work was financially supported by National Natural Science Foundation of China(No.51903197)Wuhu and Xidian University special fund for industry-universityresearch cooperation(No.XWYCXY-012020012)+3 种基金Open Fund of Zhijiang Lab(2021MC0AB02)China Postdoctoral Science Foundation(2019TQ02422019M660061XB)the Fundamental Research Funds for the Central Universities(JC2110,JB211305).
文摘A good method of synthesizing Ti_(3)C_(2)T_(x)(MXene)is critical for ensuring its success in practical applications,e.g.,electromagnetic interference shielding,electrochemical energy storage,catalysis,sensors,and biomedicine.The main concerns focus on the moderation of the approach,yield,and product quality.Herein,a modified approach,organic solvent-assisted intercalation and collection,was developed to prepare Ti_(3)C_(2)T_(x) flakes.The new approach simultaneously solves all the concerns,featuring a low requirement for facility(centrifugation speed<4000 rpm in whole process),gram-level preparation with remarkable yield(46.3%),a good electrical conductivity(8672 S cm^(−1)),an outstanding capacitive performance(352 F g^(−1)),and easy control over the dimension of Ti_(3)C_(2)T_(x) flakes(0.47–4.60μm^(2)).This approach not only gives a superb example for the synthesis of other MXene materials in laboratory,but sheds new light for the future mass production of Ti_(3)C_(2)T_(x) MXene.
基金supported by the National Natural Science Foundation of China(Grant Nos.61274106,11175138,and 61601352)
文摘The fabrication process dependent effects on single event effects (SEEs) are investigated in a commercial silicon- germanium heterojunction bipolar transistor (SiGe HBT) using three-dimensional (3D) TCAD simulations. The influences of device structure and doping concentration on SEEs are discussed via analysis of current transient and charge collection induced by ions strike. The results show that the SEEs representation of current transient is different from representation of the charge collection for the same process parameters. To be specific, the area of C/S junction is the key parameter that affects charge collection of SEE. Both current transient and charge collection are dependent on the doping of collector and substrate. The base doping slightly influences transient currents of base, emitter, and collector terminals. However, the SEEs of SiGe HBT are hardly affected by the doping of epitaxial base and the content of Ge.
基金supported in part by National Natural Science Foundation of China(Nos.61971330,61701381,and 61627901)in part by the Natural Science Basic Research Plan in Shaanxi Province of China(No.2019JM-177)in part by the Chinese Postdoctoral Science Foundation。
文摘The plasma sheath can induce radar signal modulation,causing not only ineffective target detection,but also defocusing in inverse synthetic aperture radar(ISAR)imaging.In this paper,through establishing radar echo models of the reentry object enveloped with time-varying plasma sheath,we simulated the defocusing of ISAR images in typical environment.Simulation results suggested that the ISAR defocusing is caused by false scatterings,upon which the false scatterings’formation mechanism and distribution property are analyzed and studied.The range of false scattering correlates with the electron density fluctuation frequency.The combined value of the electron density fluctuation and the pulse repetition frequency jointly determines the Doppler of false scattering.Two measurement metrics including peak signal-to-noise ratio and structural similarity are used to evaluate the influence of ISAR imaging.
基金supported by National Natural Science Foundation of China(Nos.61771370,61701381,and 11704296)。
文摘In this paper, a novel solution mitigating the radio blackout problem is proposed, which improves existing traveling magnetic field(TMF)-based methods. The most significant advance lies in replacing the external injection with self-induced current, which does not require electrodes. The improved analytical model is derived to evaluate the electron density reduction taking into consideration the self-induced current for various TMF velocities. The plasma reduction performance is analyzed for several conditions including the total absence of injected current. The results show that the velocity may be used to trade off the injected current and, when sufficiently large, eliminates the need for an injected current while mitigating radio blackout. The effectiveness of this solution to the blackout problem is demonstrated in commonly used aerospace communication bands. With a field strength of less than 0.15 T, increasing the velocity from40 m s^-1 to 3100 m s^-1 is all that is required to obviate the need for an injected current. Moreover,typical reduction ratios for electronic density tolerance(2, 1.9, 1.75 and 3 times for the L-, S-, Cand X-bands, respectively, at an altitude of 40 km) remain unchanged. Increasing the velocity of the TMF is much easier than injecting current via a metal electrode into a high-temperature flow field. The TMF method appears practical in regard to possible future applications.
基金financial support from National Natural Science Foundation of China(Nos.61871302,62101406 and 62001340)the Fundamental Research Funds for the Central Universities(No.JB211311)。
文摘For reentry communication,owing to the influence of the highly dynamic plasma sheath(PS),the parasitic modulation effect can occur and the received phase shift keying(PSK)signal constellation can be severely rotated,leading to unacceptable demodulation performance degradation.In this work,an adaptive non-coherent bit-interleaved coded modulation with iterative decoding(BICM-ID)system with binary PSK(BPSK)modulation and protograph lowdensity parity-check under the PS channel is proposed.The proposed protograph-based BICMID(P-BICM-ID)system can achieve joint processing of demodulation and decoding,where the soft information is adaptively estimated by reversible-jump Markov chain Monte Carlo(RJMCMC)algorithms.Simulation results indicate that compared to existing algorithms,the proposed system can adapt well to the dynamic characteristics of the PS channel and can obtain a 5dB performance improvement at a bit error rate of 10^(-6).
基金supported in part by National Natural Science Foundation of China(Nos.61627901,61601353,61801343 and 61901321)。
文摘In this work,microwaves and terahertz waves have performed a dual-frequency combineddiagnosis in high-temperature,large-scale plasma.According to the attenuation and phase shift of electromagnetic waves in the plasma,the electron density and collision frequency of theplasma can be inversely calculated.However,when the plasma size is large and the electron density is high,the phase shift of the electromagnetic wave is large(multiple times 2πperiod).Due to the limitations of the test equipment,the true phase shift is difficult to test accurately or to recover reality.That is,there is a problem of phase integer ambiguity.In order to obtain a phase shift of less than 180°,a higher electromagnetic wave frequency(terahertz wave with 890 GHz)is used for diagnosis.However,the attenuation of the terahertz wave diagnosis is too small(less than 0.1 d B),only the electron density can be obtained,and the collision frequency cannot be accurately obtained.Therefore,a combined diagnosis was carried out by combining twofrequencies(microwave with 36 GHz,terahertz wave with 890 GHz)to obtain electron density and collision frequency.The diagnosis result shows that the electron density is in the range of(0.65–1.5)×1019m^(-3),the collision frequency is in the range of 0.65–2 GHz,and the diagnostic accuracy is about 60%.
文摘In X-ray pulsar-based navigation, strong X-ray background noise leads to a low signal-to-noise ratio(SNR) of the observed profile, which consequently makes it very difficult to obtain an accurate pulse phase that directly determines the navigation precision. This signifies the necessity of denoising of the observed profile. Considering that the ultimate goal of denoising is to enhance the pulse phase estimation, a profile denoising algorithm is proposed by fusing the biorthogonal lifting wavelet transform of the linear phase characteristic with the thresholding technique. The statistical properties of X-ray background noise after epoch folding are studied. Then a wavelet-scale dependent threshold is introduced to overcome correlations between wavelet coefficients. Moreover, a modified hyperbola shrinking function is presented to remove the impulsive oscillations of the observed profile. The results of numerical simulations and real data experiments indicate that the proposed method can effectively improve SNR of the observed profile and pulse phase estimation accuracy, especially in short observation durations. And it also outperforms the Donoho thresholding strategy normally used in combination with the orthogonal discrete wavelet transform.