To efficiently link the continuum mechanics for rocks with the structural statistics of rock masses,a theoretical and methodological system called the statistical mechanics of rock masses(SMRM)was developed in the pas...To efficiently link the continuum mechanics for rocks with the structural statistics of rock masses,a theoretical and methodological system called the statistical mechanics of rock masses(SMRM)was developed in the past three decades.In SMRM,equivalent continuum models of stressestrain relationship,strength and failure probability for jointed rock masses were established,which were based on the geometric probability models characterising the rock mass structure.This follows the statistical physics,the continuum mechanics,the fracture mechanics and the weakest link hypothesis.A general constitutive model and complete stressestrain models under compressive and shear conditions were also developed as the derivatives of the SMRM theory.An SMRM calculation system was then developed to provide fast and precise solutions for parameter estimations of rock masses,such as full-direction rock quality designation(RQD),elastic modulus,Coulomb compressive strength,rock mass quality rating,and Poisson’s ratio and shear strength.The constitutive equations involved in SMRM were integrated into a FLAC3D based numerical module to apply for engineering rock masses.It is also capable of analysing the complete deformation of rock masses and active reinforcement of engineering rock masses.Examples of engineering applications of SMRM were presented,including a rock mass at QBT hydropower station in northwestern China,a dam slope of Zongo II hydropower station in D.R.Congo,an open-pit mine in Dexing,China,an underground powerhouse of Jinping I hydropower station in southwestern China,and a typical circular tunnel in Lanzhou-Chongqing railway,China.These applications verified the reliability of the SMRM and demonstrated its applicability to broad engineering issues associated with jointed rock masses.展开更多
The evaluation of engineering rock mass quality is fundamental work for the engineering activities of rock mass.The increasing scale of rock mass engineering necessitates higher intelligence,timeliness,and accuracy in...The evaluation of engineering rock mass quality is fundamental work for the engineering activities of rock mass.The increasing scale of rock mass engineering necessitates higher intelligence,timeliness,and accuracy in engineering rock mass quality evaluation.As the core aspects of engineering rock mass quality evaluation,the structural characteristics,mechanical characteristics,and quality classification of rock mass have been innovated in recent years.The non-contact measurement technology for rock mass structure and rapid interpretation of rock mass structure information enables the intelligent extraction and analysis of rock mass structure parameters.The modular backpack laboratory system of rock mechanics provides an effective means to acquire rock mechanical parameters on-site conveniently.The theory of statistical mechanics of rock mass(SMRM)integrates various factors such as the rock mass properties,geological environment,and engineering disturbance,providing a theoretical basis for accurately evaluating the weakening and anisotropy of rock mass.The cloud computing platform established based on SMRM can provide technical support for the rapid calculation of rock mass parameters and instant evaluation of the rock mass quality.The development of intelligent evaluation method and technology is altering the conventional technical state of qualitative and semi-quantitative evaluation of engineering rock mass quality,supporting the realization of rock mass engineering construction with intellectualization and informatization.展开更多
基金The authors are grateful to the financial support from the National Natural Science Foundation of China(Grant No.41831290)the Key R&D Project from Zhejiang Province,China(Grant No.2020C03092).
文摘To efficiently link the continuum mechanics for rocks with the structural statistics of rock masses,a theoretical and methodological system called the statistical mechanics of rock masses(SMRM)was developed in the past three decades.In SMRM,equivalent continuum models of stressestrain relationship,strength and failure probability for jointed rock masses were established,which were based on the geometric probability models characterising the rock mass structure.This follows the statistical physics,the continuum mechanics,the fracture mechanics and the weakest link hypothesis.A general constitutive model and complete stressestrain models under compressive and shear conditions were also developed as the derivatives of the SMRM theory.An SMRM calculation system was then developed to provide fast and precise solutions for parameter estimations of rock masses,such as full-direction rock quality designation(RQD),elastic modulus,Coulomb compressive strength,rock mass quality rating,and Poisson’s ratio and shear strength.The constitutive equations involved in SMRM were integrated into a FLAC3D based numerical module to apply for engineering rock masses.It is also capable of analysing the complete deformation of rock masses and active reinforcement of engineering rock masses.Examples of engineering applications of SMRM were presented,including a rock mass at QBT hydropower station in northwestern China,a dam slope of Zongo II hydropower station in D.R.Congo,an open-pit mine in Dexing,China,an underground powerhouse of Jinping I hydropower station in southwestern China,and a typical circular tunnel in Lanzhou-Chongqing railway,China.These applications verified the reliability of the SMRM and demonstrated its applicability to broad engineering issues associated with jointed rock masses.
基金the National Natural Science Foundation of China(Grant Nos.41831290 and 42177142)the Key R&D Project from Zhejiang Province,China(Grant No.2020C03092)the Key Research and Development Program of Shaanxi(Grant No.2023-YBSF-486).
文摘The evaluation of engineering rock mass quality is fundamental work for the engineering activities of rock mass.The increasing scale of rock mass engineering necessitates higher intelligence,timeliness,and accuracy in engineering rock mass quality evaluation.As the core aspects of engineering rock mass quality evaluation,the structural characteristics,mechanical characteristics,and quality classification of rock mass have been innovated in recent years.The non-contact measurement technology for rock mass structure and rapid interpretation of rock mass structure information enables the intelligent extraction and analysis of rock mass structure parameters.The modular backpack laboratory system of rock mechanics provides an effective means to acquire rock mechanical parameters on-site conveniently.The theory of statistical mechanics of rock mass(SMRM)integrates various factors such as the rock mass properties,geological environment,and engineering disturbance,providing a theoretical basis for accurately evaluating the weakening and anisotropy of rock mass.The cloud computing platform established based on SMRM can provide technical support for the rapid calculation of rock mass parameters and instant evaluation of the rock mass quality.The development of intelligent evaluation method and technology is altering the conventional technical state of qualitative and semi-quantitative evaluation of engineering rock mass quality,supporting the realization of rock mass engineering construction with intellectualization and informatization.