OBJECTIVE: To investigate the anti-breast cancer (BC) effects and mechanisms of action of Xihuang pill (XHP) by conducting in vitro experiments on hu- man BC cell lines. METHODS: Two human BC cell lines (MCF-7 ...OBJECTIVE: To investigate the anti-breast cancer (BC) effects and mechanisms of action of Xihuang pill (XHP) by conducting in vitro experiments on hu- man BC cell lines. METHODS: Two human BC cell lines (MCF-7 and MDA- MB231) were cultured and treated with XHP. Cell viability was detected using the 3-(4, 5-Dimeth- ylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Flow cytometry was used to measure the cell cycle and apoptosis. The cell cycle was ana- lyzed with propidium iodide staining. Apoptosis was evaluated using the Annexin V-fluorescein iso- thiocyanate/propidium iodide method. Western blotting was used to analyze the expression of es- trogen receptor (ER)-α and ER-13.RESULTS: XHP had growth-inhibitory effects on MCF-7 and MDA-MB231 cells with a half-maximal inhibitory concentration (IC50) of 10.14 mg/mL (MCF-7) and 8.98 mg/mL (MDA-MB231). Apoptosis was induced to some extent. Certain changes in the ER were caused. Upregulation of ER-a protein was found in MCF-7 cells. ER-β expression in MDA-MB231 cells was increased. Cell-cycle arrest was not observed in the two BC cell lines. ER-β ex- pression in MCF-7 cells was unchanged. No ER-a ex- pression was shown in MDA-MB231 cells. CONCLUSION: These data suggest that XHP can af- fect cell viability and cause apoptosis, but that the cell cycle is not blocked. XHP has a certain impact on ER expression, but its mechanisms of action of anti-13C effects may not be due to regulation of ER expression.展开更多
OBJECTIVE: To investigate the effects of Yindanxinnaotong capsule(YDXNTC) and main components compatibility and ratios on myocardium against ischemia/reperfusion injury and the effect's underlying mechanism.METHOD...OBJECTIVE: To investigate the effects of Yindanxinnaotong capsule(YDXNTC) and main components compatibility and ratios on myocardium against ischemia/reperfusion injury and the effect's underlying mechanism.METHODS: Myocardial ischemia/reperfusion injury(MIRI) was induced by ischemia for 30 min and reperfusion for 30 min. Electrocardiogram data and coronary flow were recorded, and superoxide dismutase(SOD), malondialdehyde(MDA), lactate dehydrogenase, creatine kinase-MB, cardiac troponin T and I(cT nT, cT n I) and interleukin-1β, interleukin-8,interleukin-18(IL-1β, IL-8, IL-18) in myocardium were measured. Hypoxia/reoxygenation and hydrogen peroxide(H2O2) injury were induced by hypoxia for 3 h/reoxygenation for 2 h, and 100 μM H2O2 for 1 h, respectively, in vitro rat myocardial cells(H9c2). Cell viability, SOD, MDA, cT nT and inflamma-tory factors(IL-1β, IL-8 and IL-18) were determined,and Toll-like receptor 4(TLR-4) expression was measured by western blotting.RESULTS: In the isolated heart experiment, elevated heart function, coronary flow and SOD levels,and decreased MDA levels and inflammatory factors were noted in the YDXNTC, main components and main components compatibility groups. Ventricular tachycardia/ventricular fibrillation occurrence decreased in the ginkgo biloba extract(GBE),and GBE and salvia miltiorrhiza ethanol extract compatibility(SM-E, GSEC) groups. Lactic dehydrogenase levels decreased in the YDXNTC and aqueous extract of salvia miltiorrhiza(SM-H) groups. Creatine kinase-MB decreased with GBE, SM-E, SM-H and GSEC treatment, and cT n I and cT nT levels decreased with GSEC. In the in vitro cell study,YDXNTC and main components ratios improved cell viability and SOD levels, and suppressed MDA,cT nT and inflammatory factors. TLR-4 expression was down-regulated.CONCLUSION: YDXNTC and main components compatibility showed protective effects on MIRI in this rat model and in vitro study. Regulating the Toll-like receptor signaling pathway may affect the mechanism.展开更多
基金Supported by the Beijing Traditional Chinese Medicine Science and Technology Project(QN2010-3)National Natural Science Foundation of China(No.81001564)
文摘OBJECTIVE: To investigate the anti-breast cancer (BC) effects and mechanisms of action of Xihuang pill (XHP) by conducting in vitro experiments on hu- man BC cell lines. METHODS: Two human BC cell lines (MCF-7 and MDA- MB231) were cultured and treated with XHP. Cell viability was detected using the 3-(4, 5-Dimeth- ylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Flow cytometry was used to measure the cell cycle and apoptosis. The cell cycle was ana- lyzed with propidium iodide staining. Apoptosis was evaluated using the Annexin V-fluorescein iso- thiocyanate/propidium iodide method. Western blotting was used to analyze the expression of es- trogen receptor (ER)-α and ER-13.RESULTS: XHP had growth-inhibitory effects on MCF-7 and MDA-MB231 cells with a half-maximal inhibitory concentration (IC50) of 10.14 mg/mL (MCF-7) and 8.98 mg/mL (MDA-MB231). Apoptosis was induced to some extent. Certain changes in the ER were caused. Upregulation of ER-a protein was found in MCF-7 cells. ER-β expression in MDA-MB231 cells was increased. Cell-cycle arrest was not observed in the two BC cell lines. ER-β ex- pression in MCF-7 cells was unchanged. No ER-a ex- pression was shown in MDA-MB231 cells. CONCLUSION: These data suggest that XHP can af- fect cell viability and cause apoptosis, but that the cell cycle is not blocked. XHP has a certain impact on ER expression, but its mechanisms of action of anti-13C effects may not be due to regulation of ER expression.
基金the Major National Science and Technology Projects:the Technology Reformation of Yindanxinnaotong Capsule(No.2012ZX09201201)
文摘OBJECTIVE: To investigate the effects of Yindanxinnaotong capsule(YDXNTC) and main components compatibility and ratios on myocardium against ischemia/reperfusion injury and the effect's underlying mechanism.METHODS: Myocardial ischemia/reperfusion injury(MIRI) was induced by ischemia for 30 min and reperfusion for 30 min. Electrocardiogram data and coronary flow were recorded, and superoxide dismutase(SOD), malondialdehyde(MDA), lactate dehydrogenase, creatine kinase-MB, cardiac troponin T and I(cT nT, cT n I) and interleukin-1β, interleukin-8,interleukin-18(IL-1β, IL-8, IL-18) in myocardium were measured. Hypoxia/reoxygenation and hydrogen peroxide(H2O2) injury were induced by hypoxia for 3 h/reoxygenation for 2 h, and 100 μM H2O2 for 1 h, respectively, in vitro rat myocardial cells(H9c2). Cell viability, SOD, MDA, cT nT and inflamma-tory factors(IL-1β, IL-8 and IL-18) were determined,and Toll-like receptor 4(TLR-4) expression was measured by western blotting.RESULTS: In the isolated heart experiment, elevated heart function, coronary flow and SOD levels,and decreased MDA levels and inflammatory factors were noted in the YDXNTC, main components and main components compatibility groups. Ventricular tachycardia/ventricular fibrillation occurrence decreased in the ginkgo biloba extract(GBE),and GBE and salvia miltiorrhiza ethanol extract compatibility(SM-E, GSEC) groups. Lactic dehydrogenase levels decreased in the YDXNTC and aqueous extract of salvia miltiorrhiza(SM-H) groups. Creatine kinase-MB decreased with GBE, SM-E, SM-H and GSEC treatment, and cT n I and cT nT levels decreased with GSEC. In the in vitro cell study,YDXNTC and main components ratios improved cell viability and SOD levels, and suppressed MDA,cT nT and inflammatory factors. TLR-4 expression was down-regulated.CONCLUSION: YDXNTC and main components compatibility showed protective effects on MIRI in this rat model and in vitro study. Regulating the Toll-like receptor signaling pathway may affect the mechanism.