This paper discusses and presents figures about the future power consumption in the world and, especially in Brazil, based on the current world and Brazilian’s energy scenarios. Emphasis is given to the scenarios of ...This paper discusses and presents figures about the future power consumption in the world and, especially in Brazil, based on the current world and Brazilian’s energy scenarios. Emphasis is given to the scenarios of nuclear power and uranium resources demand. A discussion on the future roles of thorium and uranium fuels in the replacement of the traditional resources like oil and gas is also presented, as it is the role of the new nuclear power plants, planned to be built in a short term time horizon. This paper considers two different indexes for future projections, and the results obtained indicated a strong dependence on them. The time horizon for the analysis was fixed on the time estimated for Brazil to reach its maximum in population, and parameters evaluated were taken from the Brazilian’s governmental and world data on the population growth, energy consumption and energy consumption per capita. Calculations show that the power consumption projections for Brazil, for the adopted time horizon and working with global indexes, become overestimated, when compared with the results considering the national indexes. According to our approach, power consumption estimates using global indexes becomes approximately 4.5 times higher than the estimates presented by the Brazilian indexes. This was the motivation to the discussion between the Brazilian and world energy demand scenarios, and also the roles of nuclear energy in the future transition from the current conventional to alternative sources.展开更多
This work proposed the application of system engineering methods to identify organizations vital for society, seeking development and well-being. System engineering requires the identification of blocks (or systems), ...This work proposed the application of system engineering methods to identify organizations vital for society, seeking development and well-being. System engineering requires the identification of blocks (or systems), identification of their service functions, identification of states, identification of required quality and identification of constraints. Analyzing modern societies, vital functions were identified and countries behavior was modeled, identifying their states. In this context, nuclear power was found to be fundamental for development and defense because of its inherent advantages for military naval purposes at war. Another striking conclusion is that nuclear power is the best solution for country energy security, more than to avoid climate changes, but to help the nation to resist climate changes. A solution to mitigate the high overnight costs of nuclear power was also proposed. It was demonstrated qualitatively that the adoption of dual purpose mobile nuclear power plants military performances, economic development and risks management.展开更多
Gas irradiation in research nuclear reactors is an important way to produce radionuclides. Although some nuclear reactors centers offer this type of service, there are few publications about capsules to irradiation of...Gas irradiation in research nuclear reactors is an important way to produce radionuclides. Although some nuclear reactors centers offer this type of service, there are few publications about capsules to irradiation of gaseous samples. This paper describes a method to fabricate and evaluate aluminum capsules to irradiate gaseous samples in nuclear reactor. A semi-circular slotted die from a hydraulic presshead was modified to seal aluminum tubes. The aluminum capsules were subjected to leak detection tests, which demonstrated the accordance with standard ISO 9978.展开更多
This paper presents the sequence of activities to improve the thermal hydraulic analysis of the IEA-R1 research reactor to operate in safe conditions after power upgrade from 2 to 5 MW and core size reduction from 30 ...This paper presents the sequence of activities to improve the thermal hydraulic analysis of the IEA-R1 research reactor to operate in safe conditions after power upgrade from 2 to 5 MW and core size reduction from 30 to 24 fuel assemblies. A realistic analysis needs the knowledge of the actual operation conditions (heat flow, flow rates) beyond the geometric data and the uncertainties associated with manufacturing and measures. A dummy fuel assembly was designed and constructed to measure the actual flow rate through the core fuel assemblies and its pressure drop. First results showed that the flow distribution over the core is nearly uniform. Nevertheless, the values are below than the calculated ones and the core bypass flow rate is greater than those estimated previously. Based on this, several activities were performed to identify and reduce the bypass flow, such as reduction of the flow rate through the sample irradiators, closing some unnecessary secondary holes on the matrix plate, improvement in the primary flow rate system and better fit of the core components on the matrix plate. A sub-aquatic visual system was used as an important tool to detect some bypass flow path. After these modifications, the fuel assemblies flow rate increased about 13%. Additional tests using the dummy fuel assembly were carried out to measure the internal flow distribution among the rectangular channels. The results showed that the flow rate through the outer channels is 10% - 15% lower than the internal ones. The flow rate in the channel formed between two adjacent fuel assemblies is an estimated parameter and it is difficult to measure because this is an open channel. A new thermal hydraulic analysis of the outermost plates of the fuel assemblies takes into account all this information. Then, a fuel design modification was proposed with the reduction of 50% in the uranium quantity in the outermost fuel plates. In order to avoid the oxidation of the outermost plates by high temperature, low flow rate, a reduction of 50% in the uranium density in the same ones was shown to be adequate to solve the problem.展开更多
The demand for nuclear fuel for research reactors is rising worldwide. Thus, the production facilities of this kind of fuel need reliable guidance on how to augment their production in order to meet the increasing dem...The demand for nuclear fuel for research reactors is rising worldwide. Thus, the production facilities of this kind of fuel need reliable guidance on how to augment their production in order to meet the increasing demand efficiently and safely. We proposed a specific procedure for increasing production capacity. That procedure was tested with data from a real plant, which produces plate-type fuel elements loaded with LEU U3Si2-Al fuel. The test was made by means of discrete event simulation, and the results indicated the proposed procedure is efficient in raising production capacity.展开更多
Gamma uranium-molybdenum alloys have been considered as the fuel phase in plate type fuel elements for material and test reactors (MTR), due to their acceptable performance under irradiation. Regarding their usage as ...Gamma uranium-molybdenum alloys have been considered as the fuel phase in plate type fuel elements for material and test reactors (MTR), due to their acceptable performance under irradiation. Regarding their usage as a dispersion phase in aluminum matrix, it is necessary to convert the as cast structure into powder, and one of the techniques considered for this purpose is the hydration-dehydration (HDH). This paper shows that, under specific conditions of heating and cooling, γ-UMo fragmentation occurs in a non-reactive predominant mechanism, as shown by the curves of hydrogen absorption/desorption as a function of time and temperature. Our focus was on the experimental results presented by the addition of 8% weight molybdenum. Following the production by induction melting, samples of the alloys were thermally treated under a constant flow of hydrogen for temperatures varying from 500°C to 600°C and for times of 0.5 to 4 h. It was observed that, even without a massive hydration-dehydration process, the alloys fragmented under specific conditions of thermal treatment during the thermal shock phase of the experiments. Also, it was observed that there was a relation between absorption and the rate of gamma decomposition or the gamma phase stability of the alloy.展开更多
Several fuel plants that supply nuclear research reactors need to increase their production capacity in order to meet the growing demand for this kind of nuclear fuel. After the enlargement of the production capacity ...Several fuel plants that supply nuclear research reactors need to increase their production capacity in order to meet the growing demand for this kind of nuclear fuel. After the enlargement of the production capacity of such plants, there will be the need of managing the new production level. That level is usually the industrial one, which poses challenges to the managerial staff. Such challenges come from the fact that several of those plants operate today on a laboratorial basis and do not carry inventory. The change to the industrial production pace asks for new actions regarding planning and control. The production process based on the hydrolysis of UF6 is not a frequent production route for nuclear fuel. Production planning and control of the industrial level of fuel production on that production route is a new field of studies. The approach of the paper consists in the creation of a mathematical linear model for minimization of costs. We also carried out a sensitivity analysis of the model. The results help in minimizing costs in different production schemes and show the need of inventory. The mathematical model is dynamic, so that it issues better results if performed monthly. The management team will therefore have a clearer view of the costs and of the new, necessary production and inventory levels.展开更多
The tragedy of Vila Socó epitomizes the socio-environmental repercussions of rapid industrialization in Cubatão. Beginning in the 1940s with the construction of the Anchieta highway, the city experienced an ...The tragedy of Vila Socó epitomizes the socio-environmental repercussions of rapid industrialization in Cubatão. Beginning in the 1940s with the construction of the Anchieta highway, the city experienced an influx of migrants drawn by burgeoning industries, leading to unplanned urban growth and the emergence of vulnerable communities like Vila Socó. This article examines the interconnected factors—such as demographic shifts, inadequate planning, and regulatory oversight—that culminated in the devastating fire of 1984, claiming numerous lives and highlighting systemic failures. Utilizing the Haddon Matrix, this study dissects the Vila Socó incident, emphasizing the roles of human error, infrastructure integrity, and socio-economic disparities in disaster causation. By contextualizing the tragedy within Cubatão’s industrial trajectory, it underscores the urgent need for comprehensive risk assessment and proactive mitigation strategies in rapidly developing regions globally. Beyond its immediate focus, this work offers broader insights into the dynamics of industrial disasters and their socio-economic implications. As pipelines continue to play a vital role in global energy infrastructure, the lessons drawn from Vila Socó’s tragedy resonate deeply, emphasizing the imperative of robust safety protocols and accountable governance to prevent similar catastrophes in the future.展开更多
The photodisinfection process using biomolded semiconductor photocatalysts can inactivate bacteria in wastewater washing machine samples. The comparative study evaluated the photocatalyst material titanium dioxide (Ti...The photodisinfection process using biomolded semiconductor photocatalysts can inactivate bacteria in wastewater washing machine samples. The comparative study evaluated the photocatalyst material titanium dioxide (TiO2) synthesized with diatomite and biocharcoal biotemplate (TiO2-Biocharcoal and TiO2-Diatomite) in photodisinfection processes using domestic washing machine wastewater samples, the results of bacterial inactivation were above 96%. The efficiency of the photodisinfection process was evaluated by counting the number of colonies of the bacteria. Experiments under LED solar lamps presented similar bacterial inactivation, and a correlation with kinetic models. The kinetic study demonstrated a curved regression, indicating a better fit with the Hom model. A tail at the end of the modeling curve indicates the presence of a high concentration of inactive bacteria in the medium, while a shoulder at the beginning of the curve suggests a heterogeneous sample with a high concentration of gram-positive bacteria. The toxicity tests performed with wastewater samples without light exposure indicated low toxicity for both materials. The study presented promising disinfection results for an accessible and efficient photo-sterilization process of water contaminated with bacteria using abundant solar and renewable energy throughout the national territory. .展开更多
The effects of substitution of Sn for Co on the microstructure, hydrogen storage and electrochemical discharge capacity of La0.7Mg0.3Al0.3Mn0.4Co0.5-xSnxNi3.8 (x=0, 0.1, 0.2, 0.3 and 0.5) alloys were investigated us...The effects of substitution of Sn for Co on the microstructure, hydrogen storage and electrochemical discharge capacity of La0.7Mg0.3Al0.3Mn0.4Co0.5-xSnxNi3.8 (x=0, 0.1, 0.2, 0.3 and 0.5) alloys were investigated using X-ray diffraction (XRD), pressure composition isotherm (PCT) and electrochemical discharge cycle. XRD, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) tests showed that all of alloys are mainly composed of LaNi5 and MgNi2 phases, but when increasing the content of Sn in alloys, the LaNiSn phase appears and microstructure is refined. The PCT showed that increasing substitution of Sn for Co results in decrease of the maximum hydrogen storage capacity from 1.48% (x=0) to 0.85% (x=0.5). The electrochemical tests indicated that the maximum discharge capacity decreases from 337.1 mA-h/g (x=0) to 239.8 mA.h/g (x=0.5); however, the discharge capacity retention at the 100th cycle increases from 70.2% (x=0) to 78.0% (x=0.5).展开更多
The nuclear industry needs of prediction of behavior and life-time, for a wide range of normal, off-normal and accident conditions for safe and economic operation. Among different thermo-mechanical properties that can...The nuclear industry needs of prediction of behavior and life-time, for a wide range of normal, off-normal and accident conditions for safe and economic operation. Among different thermo-mechanical properties that can be predictable, the knowledge on the radial temperature distribution of the UO2 (uranium dioxide) nuclear fuel during the operation of nuclear reactors is essential for safety as different mechanical and thermal-hydraulic thresholds should be respected. One of the attributes of the Brazilian CNEN (Nuclear Energy Commission) is to assess the performance of the fuel rods used in these reactors in high-bumup regimes. The effective removal of the heat generated in the fuel rods constitutes one of the primary points to consider in the design of nuclear reactors. One of the important physical parameters in the study of heat conduction from the nuclear fuel to the coolant in a PWR (pressurized water reactor) is its thermal conductivity. It is therefore desirable that the empirical models, updated for the calculation of thermal conductivity in the fuel region be developed from new sets of experimental data from the irradiated fuel rods in controlled environments This paper presents the obtained results of implementing of a new model for thermal conductivity of the UO2 in the FRAPCON code.展开更多
IEA-R1 nuclear reactor operation has the routine to control uranium content in pool water to be in trace range below 50 μg/L. There are several routes to determine the uranium trace content in water in the lite...IEA-R1 nuclear reactor operation has the routine to control uranium content in pool water to be in trace range below 50 μg/L. There are several routes to determine the uranium trace content in water in the literature;voltammetry has been systematically employed. In the present study, the chosen chemical determination of uranium traces used the voltammetric method known as AdCSV (adsorptive cathodic stripping voltammetry). This technique, based on mercury voltammetry, is an adequate methodology to determine uranium traces. The chloranilic acid [CAA] (2,5-dichloro-3,6-dihydroxy-1,4-benzo-quinone) is indicated as chelating agent. The redox reaction of UO2+2?with CAA is sensitive in the range of 2 2(CAA)2] reduction potential. In this work, we present the uranium trace results for IEA-R1 reactor water, sampled after an operation routine shutdown. The uranium trace determination for IEA-R1 pool water showed content around 1 μg/L [U] with statistical significance. Therefore the IEA-R1-reactor-water purification showed to be adequate and safe.展开更多
Copper-based composites strengthened by ceria nanoparticles were processed by conventional powder metallurgy: mixing (30 min and 46 rpm), compaction (cold, uniaxial, 1080 MPa for 10 s) and sintering (800°C for 6 ...Copper-based composites strengthened by ceria nanoparticles were processed by conventional powder metallurgy: mixing (30 min and 46 rpm), compaction (cold, uniaxial, 1080 MPa for 10 s) and sintering (800°C for 6 h in vacuum atmosphere of 10−5 torr). It was studied the microstructure (optical microscopy, scanning electron microscopy), X-ray diffraction with Rietveld refinement and some properties (electrical conductivity, Vickers hardness and fracture analysis) of the compositions 92 wt% Cu - 8 wt% CeO2 and 80 wt% Cu - 20 wt% CeO2. The results showed uniform phase distribution, low porosity and ceria disperse inside copper grain. In despite of properties, the composites had electrical conductivity of 38% IACS and 15% IACS and hardness of 69 and 88 HV5, respectively. The results of 92 wt% Cu - 8 wt% CeO2 composites were promising, and they are in according with actual literature.展开更多
Poly(L-lactic acid) (PLLA) and poly(e-caprolactone) (PCL) have been receiving much attention lately due to their biodegradability in human body as well as in the soil, also due to their biocompatibility, envir...Poly(L-lactic acid) (PLLA) and poly(e-caprolactone) (PCL) have been receiving much attention lately due to their biodegradability in human body as well as in the soil, also due to their biocompatibility, environmentally friendly characteristics and non-toxicity. Morphology of biodegradable polymers affects the rate of their biodegradation. A polymer that has high degree of crystallinity will degrade at a slower rate due to the inherent increased stability. PCL homopolymer crosslinking degree increases with increasing doses of high energy radiation. On the other hand, the irradiation ofPLLA homopolymer promotes mainly chain-scissions at doses below 250 kGy. In the present work, twin screw extruded films of PLLA and PCL biodegradable homopolymers and 50:50 (w:w) blend were electron beam irradiated using electron beam accelerator Dynamitron (E = 1.5 MeV) from Radiation Dynamics, Inc. at doses in the range of 50 kGy to 103 kGy in order to evaluate the effect of electron beam radiation. Wide-angle X-ray diffraction (WAXD) patterns of non irradiated and irradiated samples were obtained using a diffractometer Rigaku Denki Co. Ltd., Multiflex model; and Fourier transform infrared spectroscopy (FTIR) spectra was obtained using a NICOLET 4700, attenuated total reflectance (ATR) technique. By WAXD patterns of as extruded non irradiated and irradiated PLLA it was verified broad diffusion peaks corresponding to amorphous polymer. There was a slight increase of the mean crystallite size of PCL homopolymer with increasing radiation dose. PCL crystalline index (CI) decreased with radiation dose above 500 kGy. But then, PLLA CI increased with radiation dose above 750 kGy. From another point of view, PLLA presence on the 50:50 blend did not interfere on the observed mean crystallite size increase up to 250 kGy. From 500 kGy to 103 kGy the crystallite size of PCL was a little bigger in the blend than the homopolymer. In contrast, FTIR results have shown that this technique was not sensitive enough to observe the degradation promoted by ionizing radiation of the studied homopolymers and blends, and neither on the miscibility of the blends.展开更多
Dynamitron DC1500/25/04 type EBA (Electron beam accelerator), model JOB 188, was manufactured by IBA Industrial (Radiation Dynamics, Inc.) and installed at IPEN-CNEN/SP, in 1978. The technical specifications of th...Dynamitron DC1500/25/04 type EBA (Electron beam accelerator), model JOB 188, was manufactured by IBA Industrial (Radiation Dynamics, Inc.) and installed at IPEN-CNEN/SP, in 1978. The technical specifications of the EBA are: energy 0.5 to 1.5 MeV; beam current: 0.3 to 25.0 mA; beam scanning: 60 to 120 cm; beam width: 25.4 mm and frequency: 100 Hz. Nowadays, this accelerator has been used for innumerable applications, such as: For sterilization of medical, pharmaceutical and biological products, treatment of industrial and domestic effluents and sludge, preservation and disinfestations of foods and agricultural products. Other important application are lignocellulosic material irradiation as a pre-treatment to produce ethanol bio-fuel, decontamination of pesticide packing, solid residues remediation, organic compounds removal from wastewater, treatment of effluent from petroleum production units, crosslinking of foams, wires and electric cables. Electron accelerator JOB 188 is, also, very important composite and nanocomposite materials and carbon fibers irradiation, irradiated grafting ion-exchange membranes for fuel cells application, natural polymers and multilayer packages irradiation and biodegradable blends production. The energy of the electron beam is calculated as a function of the current in the accelerator high-voltage divisor, taking into account the thickness and density of the material to be irradiated. This energy is calculated considering the electron through the entire material and the distance from the titanium foil window, so that the absorbed doses at the points of entrance and exit are equivalent on the material. The dose is directly proportional to the beam current and the exposure time of the material under the electron beam and inversely proportional to the scan width. The aim of this paper is to analyze the power system parameters of the EBA Dynamitron DC 1500/25/04, such as, voltage and RMS (Root-mean-square) current in the oscillator system, high voltage generator and waveform. For this purpose software developed in the Radiation Technology Center at IPEN/CNEN-SP to simulate the energy efficiency of this industrial accelerator. Finally, it is also targeted to compare theoretical dosimetry using parameters of energy and beam current with data from the accelerator power system. This knowledge and technology will be very useful and essential for the control system upgrade of EBA, mainly Dynamitron DC 1500/25/04 taking into consideration that radiation processing technology for industrial and environmental applications has been developed and used worldwide.展开更多
This work aims to present the historical context in which the current understanding of the phenomenon of the direct contact condensation started to call the scientific society attention. The development of nuclear pow...This work aims to present the historical context in which the current understanding of the phenomenon of the direct contact condensation started to call the scientific society attention. The development of nuclear power plants Light Water Reactors demanded a safe way to collect and treat the water used to cool the reactor. Some characteristics of this water in a high energetic thermodynamic state made it unsuitable to be directly discharged in the atmosphere. Small room relieves tanks were developed to contain this discharge. These tanks were partially fulfilled with water, and the vapor injection created a vapor plume. In the interface of liquid and vapor, the thermal exchange would be increased by the characteristic turbulence of this region.展开更多
The use of Wireless Sensor Networks (WSN) associated with the reality of an Internet of Things (IoT) scenario in nuclear environments is a growing security concern. In this context, standards are intensified to preser...The use of Wireless Sensor Networks (WSN) associated with the reality of an Internet of Things (IoT) scenario in nuclear environments is a growing security concern. In this context, standards are intensified to preserve the physical integrity of these facilities considered to be highly critical due to the size of the impacts of safety accidents. This paper presents a proposal to build a methodology to evaluate the security levels of WSNs with IoT devices when used in nuclear areas. The proposal is initially based on related work to establish a more concrete initial framework and is structured in consistent steps from previous scientific studies.展开更多
This study presents the deduction of time domain mathematical equations to simulate the curve of the charging process of a symmetrical electrochemical supercapacitor with activated carbon electrodes fed by a source of...This study presents the deduction of time domain mathematical equations to simulate the curve of the charging process of a symmetrical electrochemical supercapacitor with activated carbon electrodes fed by a source of constant electric potential in time ε and the curve of the discharge process through two fixed resistors. The first resistor R<sub>Co</sub> is a control that aims to prevent sudden variations in the intensity of the electric current i<sub>1</sub>(t) present at the terminals of the electrochemical supercapacitor at the beginning of the charging process. The second resistor is the internal resistance R<sub>A</sub> of the ammeter used in the calculation of the intensity of the electric current i<sub>1</sub>(t) over time in the charging and discharging processes. The mathematical equations generated were based on a 2R(C + kU<sub>C</sub>(t)) electrical circuit model and allowed to simulate the effects of the potential-dependent capacitance (kU<sub>C</sub>(t)) on the charge and discharge curves and hence on the calculated values of the fixed capacitance C, the equivalent series resistance (ESR), the equivalent parallel resistance (EPR) and the electrical potential dependent capacitance index k.展开更多
In this research we decided to analyze the addition of silver(Ag°)on zinc oxide(ZnO)utilizing two nanoparticles:the synthesized zinc oxide-doped-silver nanoparticles(ZnO/Ag_Lab)utilizing the zinc nitrate as metal...In this research we decided to analyze the addition of silver(Ag°)on zinc oxide(ZnO)utilizing two nanoparticles:the synthesized zinc oxide-doped-silver nanoparticles(ZnO/Ag_Lab)utilizing the zinc nitrate as metal precursor for ZnO and silver nitrate as metal precursor for Ag°;and the commercial nanoparticle ZnO/Ag.For the study of application of the nanoparticles,they were processed in the form of films and the polymer utilized was the blend of HMSPP(high melt strength polypropylene)and styrene-ethylene/butadiene-styrene.For the study of nanoparticles,they were submitted to biocide tests against Staphylococcus aureus(ATCC 6538)and Escherichia coli(ATCC8739)and XRD(X-Ray Diffraction).The XRD analysis results indicated,in both of nanoparticles,with the presence of wurtzite phase of ZnO,being that on the commercial nanoparticles the intensity of peak was higher than that of synthesized one,on other hand,the peaks attributed to Ag°,were more intense in the synthesized nanoparticle.展开更多
文摘This paper discusses and presents figures about the future power consumption in the world and, especially in Brazil, based on the current world and Brazilian’s energy scenarios. Emphasis is given to the scenarios of nuclear power and uranium resources demand. A discussion on the future roles of thorium and uranium fuels in the replacement of the traditional resources like oil and gas is also presented, as it is the role of the new nuclear power plants, planned to be built in a short term time horizon. This paper considers two different indexes for future projections, and the results obtained indicated a strong dependence on them. The time horizon for the analysis was fixed on the time estimated for Brazil to reach its maximum in population, and parameters evaluated were taken from the Brazilian’s governmental and world data on the population growth, energy consumption and energy consumption per capita. Calculations show that the power consumption projections for Brazil, for the adopted time horizon and working with global indexes, become overestimated, when compared with the results considering the national indexes. According to our approach, power consumption estimates using global indexes becomes approximately 4.5 times higher than the estimates presented by the Brazilian indexes. This was the motivation to the discussion between the Brazilian and world energy demand scenarios, and also the roles of nuclear energy in the future transition from the current conventional to alternative sources.
文摘This work proposed the application of system engineering methods to identify organizations vital for society, seeking development and well-being. System engineering requires the identification of blocks (or systems), identification of their service functions, identification of states, identification of required quality and identification of constraints. Analyzing modern societies, vital functions were identified and countries behavior was modeled, identifying their states. In this context, nuclear power was found to be fundamental for development and defense because of its inherent advantages for military naval purposes at war. Another striking conclusion is that nuclear power is the best solution for country energy security, more than to avoid climate changes, but to help the nation to resist climate changes. A solution to mitigate the high overnight costs of nuclear power was also proposed. It was demonstrated qualitatively that the adoption of dual purpose mobile nuclear power plants military performances, economic development and risks management.
文摘Gas irradiation in research nuclear reactors is an important way to produce radionuclides. Although some nuclear reactors centers offer this type of service, there are few publications about capsules to irradiation of gaseous samples. This paper describes a method to fabricate and evaluate aluminum capsules to irradiate gaseous samples in nuclear reactor. A semi-circular slotted die from a hydraulic presshead was modified to seal aluminum tubes. The aluminum capsules were subjected to leak detection tests, which demonstrated the accordance with standard ISO 9978.
文摘This paper presents the sequence of activities to improve the thermal hydraulic analysis of the IEA-R1 research reactor to operate in safe conditions after power upgrade from 2 to 5 MW and core size reduction from 30 to 24 fuel assemblies. A realistic analysis needs the knowledge of the actual operation conditions (heat flow, flow rates) beyond the geometric data and the uncertainties associated with manufacturing and measures. A dummy fuel assembly was designed and constructed to measure the actual flow rate through the core fuel assemblies and its pressure drop. First results showed that the flow distribution over the core is nearly uniform. Nevertheless, the values are below than the calculated ones and the core bypass flow rate is greater than those estimated previously. Based on this, several activities were performed to identify and reduce the bypass flow, such as reduction of the flow rate through the sample irradiators, closing some unnecessary secondary holes on the matrix plate, improvement in the primary flow rate system and better fit of the core components on the matrix plate. A sub-aquatic visual system was used as an important tool to detect some bypass flow path. After these modifications, the fuel assemblies flow rate increased about 13%. Additional tests using the dummy fuel assembly were carried out to measure the internal flow distribution among the rectangular channels. The results showed that the flow rate through the outer channels is 10% - 15% lower than the internal ones. The flow rate in the channel formed between two adjacent fuel assemblies is an estimated parameter and it is difficult to measure because this is an open channel. A new thermal hydraulic analysis of the outermost plates of the fuel assemblies takes into account all this information. Then, a fuel design modification was proposed with the reduction of 50% in the uranium quantity in the outermost fuel plates. In order to avoid the oxidation of the outermost plates by high temperature, low flow rate, a reduction of 50% in the uranium density in the same ones was shown to be adequate to solve the problem.
文摘The demand for nuclear fuel for research reactors is rising worldwide. Thus, the production facilities of this kind of fuel need reliable guidance on how to augment their production in order to meet the increasing demand efficiently and safely. We proposed a specific procedure for increasing production capacity. That procedure was tested with data from a real plant, which produces plate-type fuel elements loaded with LEU U3Si2-Al fuel. The test was made by means of discrete event simulation, and the results indicated the proposed procedure is efficient in raising production capacity.
文摘Gamma uranium-molybdenum alloys have been considered as the fuel phase in plate type fuel elements for material and test reactors (MTR), due to their acceptable performance under irradiation. Regarding their usage as a dispersion phase in aluminum matrix, it is necessary to convert the as cast structure into powder, and one of the techniques considered for this purpose is the hydration-dehydration (HDH). This paper shows that, under specific conditions of heating and cooling, γ-UMo fragmentation occurs in a non-reactive predominant mechanism, as shown by the curves of hydrogen absorption/desorption as a function of time and temperature. Our focus was on the experimental results presented by the addition of 8% weight molybdenum. Following the production by induction melting, samples of the alloys were thermally treated under a constant flow of hydrogen for temperatures varying from 500°C to 600°C and for times of 0.5 to 4 h. It was observed that, even without a massive hydration-dehydration process, the alloys fragmented under specific conditions of thermal treatment during the thermal shock phase of the experiments. Also, it was observed that there was a relation between absorption and the rate of gamma decomposition or the gamma phase stability of the alloy.
文摘Several fuel plants that supply nuclear research reactors need to increase their production capacity in order to meet the growing demand for this kind of nuclear fuel. After the enlargement of the production capacity of such plants, there will be the need of managing the new production level. That level is usually the industrial one, which poses challenges to the managerial staff. Such challenges come from the fact that several of those plants operate today on a laboratorial basis and do not carry inventory. The change to the industrial production pace asks for new actions regarding planning and control. The production process based on the hydrolysis of UF6 is not a frequent production route for nuclear fuel. Production planning and control of the industrial level of fuel production on that production route is a new field of studies. The approach of the paper consists in the creation of a mathematical linear model for minimization of costs. We also carried out a sensitivity analysis of the model. The results help in minimizing costs in different production schemes and show the need of inventory. The mathematical model is dynamic, so that it issues better results if performed monthly. The management team will therefore have a clearer view of the costs and of the new, necessary production and inventory levels.
文摘The tragedy of Vila Socó epitomizes the socio-environmental repercussions of rapid industrialization in Cubatão. Beginning in the 1940s with the construction of the Anchieta highway, the city experienced an influx of migrants drawn by burgeoning industries, leading to unplanned urban growth and the emergence of vulnerable communities like Vila Socó. This article examines the interconnected factors—such as demographic shifts, inadequate planning, and regulatory oversight—that culminated in the devastating fire of 1984, claiming numerous lives and highlighting systemic failures. Utilizing the Haddon Matrix, this study dissects the Vila Socó incident, emphasizing the roles of human error, infrastructure integrity, and socio-economic disparities in disaster causation. By contextualizing the tragedy within Cubatão’s industrial trajectory, it underscores the urgent need for comprehensive risk assessment and proactive mitigation strategies in rapidly developing regions globally. Beyond its immediate focus, this work offers broader insights into the dynamics of industrial disasters and their socio-economic implications. As pipelines continue to play a vital role in global energy infrastructure, the lessons drawn from Vila Socó’s tragedy resonate deeply, emphasizing the imperative of robust safety protocols and accountable governance to prevent similar catastrophes in the future.
文摘The photodisinfection process using biomolded semiconductor photocatalysts can inactivate bacteria in wastewater washing machine samples. The comparative study evaluated the photocatalyst material titanium dioxide (TiO2) synthesized with diatomite and biocharcoal biotemplate (TiO2-Biocharcoal and TiO2-Diatomite) in photodisinfection processes using domestic washing machine wastewater samples, the results of bacterial inactivation were above 96%. The efficiency of the photodisinfection process was evaluated by counting the number of colonies of the bacteria. Experiments under LED solar lamps presented similar bacterial inactivation, and a correlation with kinetic models. The kinetic study demonstrated a curved regression, indicating a better fit with the Hom model. A tail at the end of the modeling curve indicates the presence of a high concentration of inactive bacteria in the medium, while a shoulder at the beginning of the curve suggests a heterogeneous sample with a high concentration of gram-positive bacteria. The toxicity tests performed with wastewater samples without light exposure indicated low toxicity for both materials. The study presented promising disinfection results for an accessible and efficient photo-sterilization process of water contaminated with bacteria using abundant solar and renewable energy throughout the national territory. .
基金Institute for Superconducting and Electronic Materials (ISEM)University of Wollongong and Institute Nuclear and Energy Research (IPEN)+2 种基金University of Sao Paulo for the financial supportNational Council for Scientific and Technological Development – CNPQ – Brazil for the scholarshipsfinancial support (CNPQ 472504/2010-0) granted to Julio Cesar Serafim CASINI
文摘The effects of substitution of Sn for Co on the microstructure, hydrogen storage and electrochemical discharge capacity of La0.7Mg0.3Al0.3Mn0.4Co0.5-xSnxNi3.8 (x=0, 0.1, 0.2, 0.3 and 0.5) alloys were investigated using X-ray diffraction (XRD), pressure composition isotherm (PCT) and electrochemical discharge cycle. XRD, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) tests showed that all of alloys are mainly composed of LaNi5 and MgNi2 phases, but when increasing the content of Sn in alloys, the LaNiSn phase appears and microstructure is refined. The PCT showed that increasing substitution of Sn for Co results in decrease of the maximum hydrogen storage capacity from 1.48% (x=0) to 0.85% (x=0.5). The electrochemical tests indicated that the maximum discharge capacity decreases from 337.1 mA-h/g (x=0) to 239.8 mA.h/g (x=0.5); however, the discharge capacity retention at the 100th cycle increases from 70.2% (x=0) to 78.0% (x=0.5).
文摘The nuclear industry needs of prediction of behavior and life-time, for a wide range of normal, off-normal and accident conditions for safe and economic operation. Among different thermo-mechanical properties that can be predictable, the knowledge on the radial temperature distribution of the UO2 (uranium dioxide) nuclear fuel during the operation of nuclear reactors is essential for safety as different mechanical and thermal-hydraulic thresholds should be respected. One of the attributes of the Brazilian CNEN (Nuclear Energy Commission) is to assess the performance of the fuel rods used in these reactors in high-bumup regimes. The effective removal of the heat generated in the fuel rods constitutes one of the primary points to consider in the design of nuclear reactors. One of the important physical parameters in the study of heat conduction from the nuclear fuel to the coolant in a PWR (pressurized water reactor) is its thermal conductivity. It is therefore desirable that the empirical models, updated for the calculation of thermal conductivity in the fuel region be developed from new sets of experimental data from the irradiated fuel rods in controlled environments This paper presents the obtained results of implementing of a new model for thermal conductivity of the UO2 in the FRAPCON code.
文摘IEA-R1 nuclear reactor operation has the routine to control uranium content in pool water to be in trace range below 50 μg/L. There are several routes to determine the uranium trace content in water in the literature;voltammetry has been systematically employed. In the present study, the chosen chemical determination of uranium traces used the voltammetric method known as AdCSV (adsorptive cathodic stripping voltammetry). This technique, based on mercury voltammetry, is an adequate methodology to determine uranium traces. The chloranilic acid [CAA] (2,5-dichloro-3,6-dihydroxy-1,4-benzo-quinone) is indicated as chelating agent. The redox reaction of UO2+2?with CAA is sensitive in the range of 2 2(CAA)2] reduction potential. In this work, we present the uranium trace results for IEA-R1 reactor water, sampled after an operation routine shutdown. The uranium trace determination for IEA-R1 pool water showed content around 1 μg/L [U] with statistical significance. Therefore the IEA-R1-reactor-water purification showed to be adequate and safe.
文摘Copper-based composites strengthened by ceria nanoparticles were processed by conventional powder metallurgy: mixing (30 min and 46 rpm), compaction (cold, uniaxial, 1080 MPa for 10 s) and sintering (800°C for 6 h in vacuum atmosphere of 10−5 torr). It was studied the microstructure (optical microscopy, scanning electron microscopy), X-ray diffraction with Rietveld refinement and some properties (electrical conductivity, Vickers hardness and fracture analysis) of the compositions 92 wt% Cu - 8 wt% CeO2 and 80 wt% Cu - 20 wt% CeO2. The results showed uniform phase distribution, low porosity and ceria disperse inside copper grain. In despite of properties, the composites had electrical conductivity of 38% IACS and 15% IACS and hardness of 69 and 88 HV5, respectively. The results of 92 wt% Cu - 8 wt% CeO2 composites were promising, and they are in according with actual literature.
文摘Poly(L-lactic acid) (PLLA) and poly(e-caprolactone) (PCL) have been receiving much attention lately due to their biodegradability in human body as well as in the soil, also due to their biocompatibility, environmentally friendly characteristics and non-toxicity. Morphology of biodegradable polymers affects the rate of their biodegradation. A polymer that has high degree of crystallinity will degrade at a slower rate due to the inherent increased stability. PCL homopolymer crosslinking degree increases with increasing doses of high energy radiation. On the other hand, the irradiation ofPLLA homopolymer promotes mainly chain-scissions at doses below 250 kGy. In the present work, twin screw extruded films of PLLA and PCL biodegradable homopolymers and 50:50 (w:w) blend were electron beam irradiated using electron beam accelerator Dynamitron (E = 1.5 MeV) from Radiation Dynamics, Inc. at doses in the range of 50 kGy to 103 kGy in order to evaluate the effect of electron beam radiation. Wide-angle X-ray diffraction (WAXD) patterns of non irradiated and irradiated samples were obtained using a diffractometer Rigaku Denki Co. Ltd., Multiflex model; and Fourier transform infrared spectroscopy (FTIR) spectra was obtained using a NICOLET 4700, attenuated total reflectance (ATR) technique. By WAXD patterns of as extruded non irradiated and irradiated PLLA it was verified broad diffusion peaks corresponding to amorphous polymer. There was a slight increase of the mean crystallite size of PCL homopolymer with increasing radiation dose. PCL crystalline index (CI) decreased with radiation dose above 500 kGy. But then, PLLA CI increased with radiation dose above 750 kGy. From another point of view, PLLA presence on the 50:50 blend did not interfere on the observed mean crystallite size increase up to 250 kGy. From 500 kGy to 103 kGy the crystallite size of PCL was a little bigger in the blend than the homopolymer. In contrast, FTIR results have shown that this technique was not sensitive enough to observe the degradation promoted by ionizing radiation of the studied homopolymers and blends, and neither on the miscibility of the blends.
文摘Dynamitron DC1500/25/04 type EBA (Electron beam accelerator), model JOB 188, was manufactured by IBA Industrial (Radiation Dynamics, Inc.) and installed at IPEN-CNEN/SP, in 1978. The technical specifications of the EBA are: energy 0.5 to 1.5 MeV; beam current: 0.3 to 25.0 mA; beam scanning: 60 to 120 cm; beam width: 25.4 mm and frequency: 100 Hz. Nowadays, this accelerator has been used for innumerable applications, such as: For sterilization of medical, pharmaceutical and biological products, treatment of industrial and domestic effluents and sludge, preservation and disinfestations of foods and agricultural products. Other important application are lignocellulosic material irradiation as a pre-treatment to produce ethanol bio-fuel, decontamination of pesticide packing, solid residues remediation, organic compounds removal from wastewater, treatment of effluent from petroleum production units, crosslinking of foams, wires and electric cables. Electron accelerator JOB 188 is, also, very important composite and nanocomposite materials and carbon fibers irradiation, irradiated grafting ion-exchange membranes for fuel cells application, natural polymers and multilayer packages irradiation and biodegradable blends production. The energy of the electron beam is calculated as a function of the current in the accelerator high-voltage divisor, taking into account the thickness and density of the material to be irradiated. This energy is calculated considering the electron through the entire material and the distance from the titanium foil window, so that the absorbed doses at the points of entrance and exit are equivalent on the material. The dose is directly proportional to the beam current and the exposure time of the material under the electron beam and inversely proportional to the scan width. The aim of this paper is to analyze the power system parameters of the EBA Dynamitron DC 1500/25/04, such as, voltage and RMS (Root-mean-square) current in the oscillator system, high voltage generator and waveform. For this purpose software developed in the Radiation Technology Center at IPEN/CNEN-SP to simulate the energy efficiency of this industrial accelerator. Finally, it is also targeted to compare theoretical dosimetry using parameters of energy and beam current with data from the accelerator power system. This knowledge and technology will be very useful and essential for the control system upgrade of EBA, mainly Dynamitron DC 1500/25/04 taking into consideration that radiation processing technology for industrial and environmental applications has been developed and used worldwide.
文摘This work aims to present the historical context in which the current understanding of the phenomenon of the direct contact condensation started to call the scientific society attention. The development of nuclear power plants Light Water Reactors demanded a safe way to collect and treat the water used to cool the reactor. Some characteristics of this water in a high energetic thermodynamic state made it unsuitable to be directly discharged in the atmosphere. Small room relieves tanks were developed to contain this discharge. These tanks were partially fulfilled with water, and the vapor injection created a vapor plume. In the interface of liquid and vapor, the thermal exchange would be increased by the characteristic turbulence of this region.
文摘The use of Wireless Sensor Networks (WSN) associated with the reality of an Internet of Things (IoT) scenario in nuclear environments is a growing security concern. In this context, standards are intensified to preserve the physical integrity of these facilities considered to be highly critical due to the size of the impacts of safety accidents. This paper presents a proposal to build a methodology to evaluate the security levels of WSNs with IoT devices when used in nuclear areas. The proposal is initially based on related work to establish a more concrete initial framework and is structured in consistent steps from previous scientific studies.
文摘This study presents the deduction of time domain mathematical equations to simulate the curve of the charging process of a symmetrical electrochemical supercapacitor with activated carbon electrodes fed by a source of constant electric potential in time ε and the curve of the discharge process through two fixed resistors. The first resistor R<sub>Co</sub> is a control that aims to prevent sudden variations in the intensity of the electric current i<sub>1</sub>(t) present at the terminals of the electrochemical supercapacitor at the beginning of the charging process. The second resistor is the internal resistance R<sub>A</sub> of the ammeter used in the calculation of the intensity of the electric current i<sub>1</sub>(t) over time in the charging and discharging processes. The mathematical equations generated were based on a 2R(C + kU<sub>C</sub>(t)) electrical circuit model and allowed to simulate the effects of the potential-dependent capacitance (kU<sub>C</sub>(t)) on the charge and discharge curves and hence on the calculated values of the fixed capacitance C, the equivalent series resistance (ESR), the equivalent parallel resistance (EPR) and the electrical potential dependent capacitance index k.
文摘In this research we decided to analyze the addition of silver(Ag°)on zinc oxide(ZnO)utilizing two nanoparticles:the synthesized zinc oxide-doped-silver nanoparticles(ZnO/Ag_Lab)utilizing the zinc nitrate as metal precursor for ZnO and silver nitrate as metal precursor for Ag°;and the commercial nanoparticle ZnO/Ag.For the study of application of the nanoparticles,they were processed in the form of films and the polymer utilized was the blend of HMSPP(high melt strength polypropylene)and styrene-ethylene/butadiene-styrene.For the study of nanoparticles,they were submitted to biocide tests against Staphylococcus aureus(ATCC 6538)and Escherichia coli(ATCC8739)and XRD(X-Ray Diffraction).The XRD analysis results indicated,in both of nanoparticles,with the presence of wurtzite phase of ZnO,being that on the commercial nanoparticles the intensity of peak was higher than that of synthesized one,on other hand,the peaks attributed to Ag°,were more intense in the synthesized nanoparticle.