Microglia,the primary immune cells within the brain,have gained recognition as a promising therapeutic target for managing neurodegenerative diseases within the central nervous system,including Parkinson’s disease.Na...Microglia,the primary immune cells within the brain,have gained recognition as a promising therapeutic target for managing neurodegenerative diseases within the central nervous system,including Parkinson’s disease.Nanoscale perfluorocarbon droplets have been reported to not only possess a high oxygen-carrying capacity,but also exhibit remarkable anti-inflammatory properties.However,the role of perfluoropentane in microglia-mediated central inflammatory reactions remains poorly understood.In this study,we developed perfluoropentane-based oxygen-loaded nanodroplets(PFP-OLNDs)and found that pretreatment with these droplets suppressed the lipopolysaccharide-induced activation of M1-type microglia in vitro and in vivo,and suppressed microglial activation in a mouse model of Parkinson’s disease.Microglial suppression led to a reduction in the inflammatory response,oxidative stress,and cell migration capacity in vitro.Consequently,the neurotoxic effects were mitigated,which alleviated neuronal degeneration.Additionally,ultrahigh-performance liquid chromatography–tandem mass spectrometry showed that the anti-inflammatory effects of PFP-OLNDs mainly resulted from the modulation of microglial metabolic reprogramming.We further showed that PFP-OLNDs regulated microglial metabolic reprogramming through the AKT-mTOR-HIF-1αpathway.Collectively,our findings suggest that the novel PFP-OLNDs constructed in this study alleviate microglia-mediated central inflammatory reactions through metabolic reprogramming.展开更多
Olfactory ensheathing glia promote axonal regeneration in the mammalian central nervous system,including retinal ganglion cell axonal growth through the injured optic nerve.Still,it is unknown whether olfactory enshea...Olfactory ensheathing glia promote axonal regeneration in the mammalian central nervous system,including retinal ganglion cell axonal growth through the injured optic nerve.Still,it is unknown whether olfactory ensheathing glia also have neuroprotective properties.Olfactory ensheathing glia express brain-derived neurotrophic factor,one of the best neuroprotectants for axotomized retinal ganglion cells.Therefore,we aimed to investigate the neuroprotective capacity of olfactory ensheating glia after optic nerve crush.Olfactory ensheathing glia cells from an established rat immortalized clonal cell line,TEG3,were intravitreally injected in intact and axotomized retinas in syngeneic and allogeneic mode with or without microglial inhibition or immunosuppressive treatments.Anatomical and gene expression analyses were performed.Olfactory bulb-derived primary olfactory ensheathing glia and TEG3 express major histocompatibility complex classⅡmolecules.Allogeneically and syngenically transplanted TEG3 cells survived in the vitreous for up to 21 days,forming an epimembrane.In axotomized retinas,only the allogeneic TEG3 transplant rescued retinal ganglion cells at 7 days but not at 21 days.In these retinas,microglial anatomical activation was higher than after optic nerve crush alone.In intact retinas,both transplants activated microglial cells and caused retinal ganglion cell death at 21 days,a loss that was higher after allotransplantation,triggered by pyroptosis and partially rescued by microglial inhibition or immunosuppression.However,neuroprotection of axotomized retinal ganglion cells did not improve with these treatments.The different neuroprotective properties,different toxic effects,and different responses to microglial inhibitory treatments of olfactory ensheathing glia in the retina depending on the type of transplant highlight the importance of thorough preclinical studies to explore these variables.展开更多
Gamma-aminobutyric acid(GABA)ergic neurons,the most abundant inhibitory neurons in the human brain,have been found to be reduced in many neurological disorders,including Alzheimer's disease and Alzheimer's dis...Gamma-aminobutyric acid(GABA)ergic neurons,the most abundant inhibitory neurons in the human brain,have been found to be reduced in many neurological disorders,including Alzheimer's disease and Alzheimer's disease-related dementia.Our previous study identified the upregulation of microRNA-502-3p(miR-502-3p)and downregulation of GABA type A receptor subunitα-1 in Alzheimer's disease synapses.This study investigated a new molecular relationship between miR-502-3p and GABAergic synapse function.In vitro studies were perfo rmed using the mouse hippocampal neuronal cell line HT22 and miR-502-3p agomiRs and antagomiRs.In silico analysis identified multiple binding sites of miR-502-3p at GABA type A receptor subunitα-1 mRNA.Luciferase assay confirmed that miR-502-3p targets the GABA type A receptor subunitα-1 gene and suppresses the luciferase activity.Furthermore,quantitative reve rse transcription-polymerase chain reaction,miRNA in situ hybridization,immunoblotting,and immunostaining analysis confirmed that overexpression of miR-502-3p reduced the GABA type A receptor subunitα-1 level,while suppression of miR-502-3p increased the level of GABA type A receptor subunitα-1 protein.Notably,as a result of the overexpression of miR-502-3p,cell viability was found to be reduced,and the population of necrotic cells was found to be increased.The whole cell patch-clamp analysis of human-GABA receptor A-α1/β3/γ2L human embryonic kidney(HEK)recombinant cell line also showed that overexpression of miR-502-3p reduced the GABA current and overall GABA function,suggesting a negative correlation between miR-502-3p levels and GABAergic synapse function.Additionally,the levels of proteins associated with Alzheimer s disease were high with miR-502-3p overexpression and reduced with miR-502-3p suppression.The present study provides insight into the molecular mechanism of regulation of GABAergic synapses by miR-502-3p.We propose that micro-RNA,in particular miR-502-3p,could be a potential therapeutic to rget to modulate GABAergic synapse function in neurological disorders,including Alzheimer's disease and Alzheimer's diseaserelated dementia.展开更多
De novo mutations in genes encoding K^(+)channels are implicated in many severe neurodevelopmental disorders.Specifically,mutations in KCNA2,encoding the Shaker-type voltage-gated K^(+)channel Kv1.2,and KCNJ2,encoding...De novo mutations in genes encoding K^(+)channels are implicated in many severe neurodevelopmental disorders.Specifically,mutations in KCNA2,encoding the Shaker-type voltage-gated K^(+)channel Kv1.2,and KCNJ2,encoding the inwardly rectifying K^(+)channel Kir2.1,associate with focal and generalized epilepsies,brain atrophy,autism,ataxia and hereditary spastic paraplegia(Syrbe et al.,2015;Masnada et al.,2017;Cheng et al.,2021).展开更多
Autism spectrum disorders are a group of neurodevelopmental disorders involving more than 1100 genes,including Ctnnd2 as a candidate gene.Ctnnd2knockout mice,serving as an animal model of autis m,have been demonstrate...Autism spectrum disorders are a group of neurodevelopmental disorders involving more than 1100 genes,including Ctnnd2 as a candidate gene.Ctnnd2knockout mice,serving as an animal model of autis m,have been demonstrated to exhibit decreased density of dendritic spines.The role of melatonin,as a neuro hormone capable of effectively alleviating social interaction deficits and regulating the development of dendritic spines,in Ctnnd2 deletion-induced nerve injury remains unclea r.In the present study,we discove red that the deletion of exon 2 of the Ctnnd2 gene was linked to social interaction deficits,spine loss,impaired inhibitory neurons,and suppressed phosphatidylinositol-3-kinase(PI3K)/protein kinase B(Akt) signal pathway in the prefrontal cortex.Our findings demonstrated that the long-term oral administration of melatonin for 28 days effectively alleviated the aforementioned abnormalities in Ctnnd2 gene-knockout mice.Furthermore,the administration of melatonin in the prefro ntal cortex was found to improve synaptic function and activate the PI3K/Akt signal pathway in this region.The pharmacological blockade of the PI3K/Akt signal pathway with a PI3K/Akt inhibitor,wo rtmannin,and melatonin receptor antagonists,luzindole and 4-phenyl-2-propionamidotetralin,prevented the melatonin-induced enhancement of GABAergic synaptic function.These findings suggest that melatonin treatment can ameliorate GABAe rgic synaptic function by activating the PI3K/Akt signal pathway,which may contribute to the improvement of dendritic spine abnormalities in autism spectrum disorders.展开更多
BACKGROUND Paragangliomas(PG)are rare neoplasms of neuroendocrine origin that tend to be highly vascularized,slow-growing,and usually sporadic.To date,common treatment options are surgical resection(SR),with or withou...BACKGROUND Paragangliomas(PG)are rare neoplasms of neuroendocrine origin that tend to be highly vascularized,slow-growing,and usually sporadic.To date,common treatment options are surgical resection(SR),with or without radiation therapy(RT),and a watch-and-wait approach.AIM To evaluate the local control and effectiveness of exclusive fractionated stereotactic RT(FSRT)treatment in unresectable PG(uPG).METHODS We retrospectively evaluated patients with uPG(medically inoperable or refused SR)treated with FSRT with a Cyberknife System(Accuray Incorporated,Sunnyvale,California).Toxicity and initial efficacy were evaluated.RESULTS From May 2009 to January 2023,6 patients with a median age of 68(range 20-84)were treated with FSRT.The median delivered dose was 21 Gy(range 20-30 Gy)at a median isodose line of 75.5%(range 70%-76%)in 4 fractions(range 3-5 fractions).The median volume was 13.6 mL(range 12.4-65.24 mL).The median cumulative biological effective dose and equivalent dose in 2-Gy fractions were 70 Gy and 37.10 Gy respectively.Site of origin involved were the timpa-nojugular glomus(4/6),temporal bone,and cervical spine.In 1 of the 6 patients,the follow-up was insufficient;5 of 6 patients showed a 5-year overall survival and 5-year progression-free survival of 100%.We observed negligible toxicities during and after RT.The majority of patients showed stable symptoms during follow-up.Only 1 patient developed spine metastases.CONCLUSION Our preliminary results on this small cohort of patients suggest that FSRT could be an effective and safe alternative to SR.展开更多
BACKGROUND Previous assessments of stem cell therapy for spinal cord injuries(SCI)have encountered challenges and constraints.Current research primarily emphasizes safety in early-phase clinical trials,while systemati...BACKGROUND Previous assessments of stem cell therapy for spinal cord injuries(SCI)have encountered challenges and constraints.Current research primarily emphasizes safety in early-phase clinical trials,while systematic reviews prioritize effectiveness,often overlooking safety and translational feasibility.This situation prompts inquiries regarding the readiness for clinical adoption.AIM To offer an up-to-date systematic literature review of clinical trial results concerning stem cell therapy for SCI.METHODS A systematic search was conducted across major medical databases[PubMed,Embase,Reference Citation Analysis(RCA),and Cochrane Library]up to October 14,2023.The search strategy utilized relevant Medical Subject Heading(MeSH)terms and keywords related to"spinal cord","injury","clinical trials","stem cells","functional outcomes",and"adverse events".Studies included in this review consisted of randomized controlled trials and non-randomized controlled trials reporting on the use of stem cell therapies for the treatment of SCI.RESULTS In a comprehensive review of 66 studies on stem cell therapies for SCI,496 papers were initially identified,with 237 chosen for full-text analysis.Among them,236 were deemed eligible after excluding 170 for various reasons.These studies encompassed 1086 patients with varying SCI levels,with cervical injuries being the most common(42.2%).Bone marrow stem cells were the predominant stem cell type used(71.1%),with various administration methods.Follow-up durations averaged around 84.4 months.The 32.7%of patients showed functional improvement from American spinal injury association Impairment Scale(AIS)A to B,40.8%from AIS A to C,5.3%from AIS A to D,and 2.1%from AIS B to C.Sensory improvements were observed in 30.9%of patients.A relatively small number of adverse events were recorded,including fever(15.1%),headaches(4.3%),muscle tension(3.1%),and dizziness(2.6%),highlighting the potential for SCI recovery with stem cell therapy.CONCLUSION In the realm of SCI treatment,stem cell-based therapies show promise,but clinical trials reveal potential adverse events and limitations,underscoring the need for meticulous optimization of transplantation conditions and parameters,caution against swift clinical implementation,a deeper understanding of SCI pathophysiology,and addressing ethical,tumorigenicity,immunogenicity,and immunotoxicity concerns before gradual and careful adoption in clinical practice.展开更多
Objective To investigate the pretreatment effects of Rhodiola rosea (R. rosea) extract on cognitive dysfunction, oxidative stress in hippocampus and hippocampal neuron injury in a rat model of Alzheimer's disease ...Objective To investigate the pretreatment effects of Rhodiola rosea (R. rosea) extract on cognitive dysfunction, oxidative stress in hippocampus and hippocampal neuron injury in a rat model of Alzheimer's disease (AD). Methods Male Sprague-Dawley rats were pretreated with R. rosea extract at doses of 1.5, 3.0, and 6.0 g/kg for 3 weeks, followed by bilateral intracerebroventricular injection with streptozotocin (1.5 mg/kg) on days 1 and 3. Behavioral alterations were monitored after 2 weeks from the lesion using Morris water maze task. Three weeks after the lesion, the rats were sacrificed for measuring the malondialdehyde (MDA), glutathione reductase (GR) and reduced glutathione (GSH) levels in hippocampus and histopathology of hippocampal neurons. Results The MDA level was significantly increased while the GR and GSH levels were significantly decreased with striking impairments in spatial learning and memory and severe damage to hippocampal neurons in the model rat induced by intracerebroventricular injection of streptozotocin. These abnormalities were significantly improved by pretreatment with R. rosea extract (3.0 g/kg). Conclusion R. rosea extract can protect rats against cognitive deficits, neuronal injury and oxidative stress induced by intracerebroventricular injection of streptozotocin, and may be used as a potential agent in treatment of neurodegenerative diseases such as AD.展开更多
It is unanimously accepted that stroke is a highly heterogeneous disorder. Different subtypes of ischemic stroke may have different risk factors, clinical features, and prognoses. The aim of this study was to evaluate...It is unanimously accepted that stroke is a highly heterogeneous disorder. Different subtypes of ischemic stroke may have different risk factors, clinical features, and prognoses. The aim of this study was to evaluate the risk factors, clinical characteristics, and prognoses of different subtypes of ischemic stroke defined by the Trial of ORG10172 in Acute Stroke Treatment (TOAST) criteria. We prospectively analyzed the data from 530 consecutive patients who were admitted to our hospital with acute ischemic stroke within 7 days of stroke onset during the study period. Standardized data assessment was used and the cause of ischemic stroke was classified according to the TOAST criteria. Patients were followed up till 30 and 90 days after stroke onset. It was found that large-artery atherosclerosis was the most frequent etiology of stroke (37.4%), and showed the highest male preponderance, the highest prevalence of previous transient ischemic attack, and the longest hospital stay among all subtypes. Small artery disease (36.4%) was associated with higher body mass index, higher plasma triglycerides, and lower plasma high-density lipoprotein cholesterol than cardioembolism. Cardioembolism (7.7%), which was particularly common in the elderly (i.e., individuals aged 65 years and older), showed the highest female preponderance, the highest prevalence of atrial fibrillation, the earliest presentation to hospital after stroke onset, the most severe symptoms on admission, the maximum complications associated with an adverse outcome, and the highest rate of stroke recurrence and mortality. Our results suggest that ischemic stroke should be regarded as a highly heterogeneous disorder. Studies involving risk factors, clinical features, and prognoses of ischemic stroke should differentiate between etiologic stroke subtypes.展开更多
Peripheral nerve injury not only affects the site of the injury, but can also induce neuronal apop- tosis at the spinal cord. However, many acupuncture clinicians still focus only on the injury site, selecting acupoin...Peripheral nerve injury not only affects the site of the injury, but can also induce neuronal apop- tosis at the spinal cord. However, many acupuncture clinicians still focus only on the injury site, selecting acupoints entirely along the injured nerve trunk and neglecting other regions; this may delay onset of treatment efficacy and rehabilitation. Therefore, in the present study, we compared the clinical efficacy of acupuncture at Governor vessel and local meridian acupoints combined (GV/LM group) with acupuncture at local meridian acupoints alone (LM group) in the treatment of patients with peripheral nerve injury. In the GV/LM group (n = 15), in addition to meridian acupoints at the injury site, the following acupoints on the Governor vessel were stimulated: Baihui (GV20), Fengfu (GV16), Dazhui (GV14), and Shenzhu (GV12), selected to treat nerve injury of the upper limb, and Jizhong (GV6), Mingmen (GV4), Yaoyangguan (GV3), and Yaoshu (GV2) to treat nerve injury of the lower limb. In the LM group (n = 15), only me- ridian acupoints along the injured nerve were selected. Both groups had electroacupuncture treatment for 30 minutes, once a day, 5 times per week, for 6 weeks. Two cases dropped out of the LM group. A good or excellent clinical response was obtained in 80% of the patients in the GV/ LM group and 38.5% of the LM group. In a second study, an additional 20 patients underwent acupuncture with the same prescription as the GV/LM group. Electomyographic nerve conduc- tion tests were performed before and after acupuncture to explore the mechanism of action of the treatment. An effective response was observed in 80.0% of the patients, with greater motor nerve conduction velocity and amplitude after treatment, indicating that electroacupuncture on specific Governor vessel acupoints promotes functional motor nerve repair after peripheral nerve injury. In addition, electromyography was performed before, during and after electroacu- puncture in one patient with radial nerve injury. After a single session, the patient's motor nerve conduction velocity increased by 23.2%, indicating that electroacupuncture at Governor vessel acupoints has an immediate therapeutic effect on peripheral nerve injury. Our results indicate that Governor vessel and local meridian acupoints used simultaneously promote functional repair after peripheral nerve injury. The mechanism of action may arise from an improvement of the local microenvironment in injured nervous tissue, as well as immediate effects of Governor vessel and local meridian acupoint stimulation to ensure the continuity between the peripheral and central nervous systems.展开更多
Objective: To get better recognition of central neurocytoma and diminish misdiagnosis. Methods: A retrospective review identified 15 cases of central neurocytoma. All cases of central neurocytoma were analyzed for t...Objective: To get better recognition of central neurocytoma and diminish misdiagnosis. Methods: A retrospective review identified 15 cases of central neurocytoma. All cases of central neurocytoma were analyzed for their clinical symptoms, pathologic changes, immunohistochemical staining, prognosis and differential diagnosis. Clinical follow up was performed. Results: There were 8 males and 7 females aged 10-64 years (median 32.93 years). The most common presenting symptoms were those related to increased intracranial pressure (ICP), including headache (100%), papilledema (93 %) and vomiting (80%). All tumors were located in the ventricular system. The tumors were composed of uniform cells with round nuclei and a fine chromatin pattern, and in some areas, small cells with perinuclear halo could be seen. In particular, the anuclear areas may have a fine fibrillary matrix (neuropil). Nuclear atypia and vascular proliferation appeared in two cases, respectively. Focal necrosis could be seen in one case. Immunohistochemical findings included expression of synaptophysin (15/15), neuron specific enolase (12/15) and glial fibrillary acidic protein (GFAP) (3/15). MIB-1 proliferation index ranged from 0.8- 12.5%, and was more than 2% in 3 of 15 cases assessed. Follow-up information of 11 patients was available. Conclusions: Central neurocytoma has a favorable prognosis in general, but in some cases, the clinical course could be aggressive. Increase of GFAP positivity, proliferation index and vascular proliferation might suggest a more malignant process.展开更多
This study investigated the possible involvement of microRNAs in the regulation of genes that participate in peripheral neural regeneration. A microRNA microarray analysis was conducted and 23 microRNAs were identiife...This study investigated the possible involvement of microRNAs in the regulation of genes that participate in peripheral neural regeneration. A microRNA microarray analysis was conducted and 23 microRNAs were identiifed whose expression was signiifcantly changed in rat dorsal root ganglia after sciatic nerve transection. The expression of one of the downregulated microRNAs, microRNA-214, was validated using quantitative reverse transcriptase-PCR. MicroRNA-214 was predicted to target the 3′-untranslated region of Slit-Robo GTPase-activating protein 3. In situ hybridization veriifed that microRNA-214 was located in the cytoplasm of dorsal root ganglia primary neurons and was downregulated following sciatic nerve transection. Moreover, a com-bination of in situ hybridization and immunohistochemistry revealed that microRNA-214 and Slit-Robo GTPase-activating protein 3 were co-localized in dorsal root ganglion primary neu-rons. Western blot analysis suggested that Slit-Robo GTPase-activating protein 3 was upregulated in dorsal root ganglion neurons after sciatic nerve transection. These data demonstrate that mi-croRNA-214 is located and differentially expressed in dorsal root ganglion primary neurons and may participate in regulating the gene expression of Slit-Robo GTPase-activating protein 3 after sciatic nerve transection.展开更多
Studies have confirmed that bone marrow-derived mesenchymal stem cells (MSCs) can be used for treatment of several nervous system diseases. However, isolation of bone marrow-derived MSCs (BMSCs) is an invasive and...Studies have confirmed that bone marrow-derived mesenchymal stem cells (MSCs) can be used for treatment of several nervous system diseases. However, isolation of bone marrow-derived MSCs (BMSCs) is an invasive and painful process and the yield is very low. Therefore, there is a need to search for other alterative stem cell sources. Adipose-derived MSCs (ADSCs) have phenotypic and gene expression profiles similar to those of BMSCs. The production of ADSCs is greater than that of BMSCs, and ADSCs proliferate faster than BMSCs. To compare the effects of venous grafts containing BMSCs or ADSCs on sciatic nerve injury, in this study, rats were randomly divided into four groups: sham (only sciatic nerve exposed), Matrigel (MG; sciatic nerve injury + intravenous transplantation of MG vehicle), ADSCs (sciatic nerve injury + intravenous MG containing ADSCs), and BMSCs (sciatic nerve injury + intravenous MG containing BMSCs) groups. Sciatic functional index was calculated to evaluate the function of injured sciatic nerve. Morphologic characteristics of nerves distal to the lesion were observed by toluidine blue staining. Spinal motor neurons labeled with Fluoro-Gold were quantitatively assessed. Compared with sham-operated rats, sciatic functional index was lower, the density of small-diameter fibers was significantly increased, and the number of motor neurons significantly decreased in rats with sciatic nerve injury. Neither ADSCs nor BMSCs significantly improved the sciatic nerve function of rats with sciatic nerve injury,increased fiber density, fiber diameters, axonal diameters, myelin sheath thickness, and G ratios (axonal diameter/fiber diameter ratios) in the sciatic nerve distal to the lesion site. There was no significant difference in the number of spinal motor neurons among ADSCs, BMSCs and MG groups. These results suggest that neither BMSCs nor ADSCs provide satisfactory results for peripheral nerve repair when using MG as the conductor for engraftment.展开更多
Far lateral lumbar disc herniations(FLLDH)represent a separate category of disc pathology which includes both intraforaminal and extraforaminal lumbar disc herniations,that are characterized by a peculiar clinical pre...Far lateral lumbar disc herniations(FLLDH)represent a separate category of disc pathology which includes both intraforaminal and extraforaminal lumbar disc herniations,that are characterized by a peculiar clinical presentation,diagnostic and treatment modalities as compared to the more frequent median and paramedian disc hernias.Surgical treatment often represents the only effective weapon for the cure of this disease and over the years different approaches have been developed that can reach the region of the foramen or external to it,with different degrees of invasiveness.The diagnosis is more demanding and still underestimated as it requires a more detailed knowledge in the spine anatomy and dedicated radiological studies.Computerized tomography and in particular magnetic resonance imaging are the appropriate tools for the diagnosis of FLLDH.Despite the widespread use of these diagnostic tests,many cases of FLLDH are overlooked due to insufficiently detailed radiological examinations or due to the execution of exams not focused to the foraminal or the extraforaminal region.Neurophysiological studies represent a valid aid in the diagnostic classification of this pathology and in some cases they can facilitate the differential diagnosis with other types of radiculopathies.In the present study,a comprehensive review of the clinical presentation,epidemiology,radiological study and the neurophysiological aspects is presented.展开更多
Charcot-Marie-Tooth neuropathies(CMT)constitute a group of common but highly heterogeneous,non-syndromic genetic disorders affecting predominantly the peripheral nervous system.CMT type 1A(CMT1A)is the most frequent t...Charcot-Marie-Tooth neuropathies(CMT)constitute a group of common but highly heterogeneous,non-syndromic genetic disorders affecting predominantly the peripheral nervous system.CMT type 1A(CMT1A)is the most frequent type and accounts for almost~50%of all diagnosed CMT cases.CMT1A results from the duplication of the peripheral myelin protein 22(PMP22)gene.Overexpression of PMP22 protein overloads the protein folding apparatus in Schwann cells and activates the unfolded protein response.This leads to Schwann cell apoptosis,dys-and de-myelination and secondary axonal degeneration,ultimately causing neurological disabilities.During the last decades,several different gene therapies have been developed to treat CMT1A.Almost all of them remain at the pre-clinical stage using CMT1A animal models overexpressing PMP22.The therapeutic goal is to achieve gene silencing,directly or indirectly,thereby reversing the CMT1A genetic mechanism allowing the recovery of myelination and prevention of axonal loss.As promising treatments are rapidly emerging,treatment-responsive and clinically relevant biomarkers are becoming necessary.These biomarkers and sensitive clinical evaluation tools will facilitate the design and successful completion of future clinical trials for CMT1A.展开更多
Spinal cord injury is a major cause of disability with devastating neurological outcomes and lim-ited therapeutic opportunities, even though there are thousands of publications on spinal cord injury annually. There ar...Spinal cord injury is a major cause of disability with devastating neurological outcomes and lim-ited therapeutic opportunities, even though there are thousands of publications on spinal cord injury annually. There are two major types of spinal cord injury, transaction of the spinal cord and spinal cord contusion. Both can theoretically be treated, but there is no well documented treatment in human being. As for spinal cord contusion, we have developed an operation with fabulous result.展开更多
One of the major problems of modern neurobiology is how to replace dead or damaged neurons in the human brain or spinal cord after injury or as a consequence of neurodegenerative dis- eases. In fact, because adult mam...One of the major problems of modern neurobiology is how to replace dead or damaged neurons in the human brain or spinal cord after injury or as a consequence of neurodegenerative dis- eases. In fact, because adult mammalian neurons are post-mi- totic cells that cannot divide to replace dead cells, loss due to lesion or disease is permanent. Furthermore, surviving neurons have modest capacity to regenerate their damaged axons and re-establish functional connections. Thus, a gradual neurode- generative scenario with certain similarities in stroke, brain or spinal cord injuries and neurological diseases like Alzheimer's disease is produced. These conditions represent the major disease burden of the modern world in terms of mortality, dis- ability, productivity loss and health-care costs (World Health Organization, 2008). While much effort has been directed to understand the molecular and cellular mechanisms involved in the pathology of these diseases to set new effective treatments, many neuroprotective and regenerative approaches, although showing positive results in preclinical studies, have so far failed to provide strong benefit to patients.展开更多
AIM: To analyze the polygraphic sleep patterns during cirrhosis progression in a rat model by repeated CCh administration. METHODS: Male Wistar rats received three weekly injections of CCl4 for 11 wk, and were analy...AIM: To analyze the polygraphic sleep patterns during cirrhosis progression in a rat model by repeated CCh administration. METHODS: Male Wistar rats received three weekly injections of CCl4 for 11 wk, and were analyzed before and during the induction of cirrhosis. Rats were im- planted with electrodes to record their sleep patterns. Polygraph recordings were made weekly over 11 wk for 8 h, during the light period. After a basal recording, rats received three weekly injections of CCl4. Histological confirmation of cirrhosis was performed after 11 wk. RESULTS: The results showed a progressive decrease in total wake time that reached statistical significance from the second week of treatment. In addition, there was an increase in total time of slow wave sleep (SWS)Ⅱ and rapid eye movement sleep (REM sleep) in most of the 11 wk. SWS I showed no significant variations. During the final weeks, a significant increase in REM sleep frequency was also observed. Histological analyses of the livers showed unequivocal signs of cirrhosis. CONCLUSION: These data suggest that hepatic failure produced by CCh administration is capable of modifying the sleep pattern even after only a few doses.展开更多
A neuroprosthesis is a type of precision medical device that is intended to manipulate the neuronal signals of the brain in a closed-loop fashion,while simultaneously receiving stimuli from the environment and control...A neuroprosthesis is a type of precision medical device that is intended to manipulate the neuronal signals of the brain in a closed-loop fashion,while simultaneously receiving stimuli from the environment and controlling some part of a human brain or body.Incoming visual information can be processed by the brain in millisecond intervals.The retina computes visual scenes and sends its output to the cortex in the form of neuronal spikes for further computation.Thus,the neuronal signal of interest for a retinal neuroprosthesis is the neuronal spike.Closed-loop computation in a neuroprosthesis includes two stages:encoding a stimulus as a neuronal signal,and decoding it back into a stimulus.In this paper,we review some of the recent progress that has been achieved in visual computation models that use spikes to analyze natural scenes that include static images and dynamic videos.We hypothesize that in order to obtain a better understanding of the computational principles in the retina,a hypercircuit view of the retina is necessary,in which the different functional network motifs that have been revealed in the cortex neuronal network are taken into consideration when interacting with the retina.The different building blocks of the retina,which include a diversity of cell types and synaptic connections-both chemical synapses and electrical synapses(gap junctions)-make the retina an ideal neuronal network for adapting the computational techniques that have been developed in artificial intelligence to model the encoding and decoding of visual scenes.An overall systems approach to visual computation with neuronal spikes is necessary in order to advance the next generation of retinal neuroprosthesis as an artificial visual system.展开更多
Oxidative stress contributes to the pathogenesis of neurodegenerative diseases.With the aim to find reagents that reduce oxidative stress,a phage display library was screened for peptides mimicking a2,6-sialyllactose(...Oxidative stress contributes to the pathogenesis of neurodegenerative diseases.With the aim to find reagents that reduce oxidative stress,a phage display library was screened for peptides mimicking a2,6-sialyllactose(6'-SL),which is known to beneficially influence neural functions.Using Sambucus nigra lectin,which specifically binds to 6'-SL,we screened a phage display library and found a peptide comprising identical sequences of 12 amino acids.Mimetic peptide,reverse peptide and scrambled peptide were tested for inhibition of 6'-SL binding to the lectin.Indeed,lectin binding to 6'-SL was inhibited by the most frequently identified mimetic peptide,but not by the reverse or scrambled peptides,showing that this peptide mimics 6'-SL.Functionally,mimetic peptide,but not the reverse or scrambled peptides,increased viability and expression of neural cell adhesion molecule L1 in SK-N-SH human neuroblastoma cells,and promoted survival and neurite outgrowth of cultured mouse cerebellar granule neurons challenged by H_20_2-induced oxidative stress.The combined results indicate that the 6'-SL mimetic peptide promotes neuronal survival and neuritogenesis,thus raising hopes for the treatment of neurodegenerative diseases.This study was approved by the Medical Ethics Committee of Shantou University Medical College,China(approval No.SUMC 2014-004)on February 20,2014.展开更多
基金supported by the National Natural Science Foundation of China,No.82101327(to YY)President Foundation of Nanfang Hospital,Southern Medical University,No.2020A001(to WL)+1 种基金Guangdong Basic and Applied Basic Research Foundation,Nos.2019A1515110150,2022A1515012362(both to YY)Guangzhou Science and Technology Project,No.202201020111(to YY).
文摘Microglia,the primary immune cells within the brain,have gained recognition as a promising therapeutic target for managing neurodegenerative diseases within the central nervous system,including Parkinson’s disease.Nanoscale perfluorocarbon droplets have been reported to not only possess a high oxygen-carrying capacity,but also exhibit remarkable anti-inflammatory properties.However,the role of perfluoropentane in microglia-mediated central inflammatory reactions remains poorly understood.In this study,we developed perfluoropentane-based oxygen-loaded nanodroplets(PFP-OLNDs)and found that pretreatment with these droplets suppressed the lipopolysaccharide-induced activation of M1-type microglia in vitro and in vivo,and suppressed microglial activation in a mouse model of Parkinson’s disease.Microglial suppression led to a reduction in the inflammatory response,oxidative stress,and cell migration capacity in vitro.Consequently,the neurotoxic effects were mitigated,which alleviated neuronal degeneration.Additionally,ultrahigh-performance liquid chromatography–tandem mass spectrometry showed that the anti-inflammatory effects of PFP-OLNDs mainly resulted from the modulation of microglial metabolic reprogramming.We further showed that PFP-OLNDs regulated microglial metabolic reprogramming through the AKT-mTOR-HIF-1αpathway.Collectively,our findings suggest that the novel PFP-OLNDs constructed in this study alleviate microglia-mediated central inflammatory reactions through metabolic reprogramming.
基金supported by the Spanish Ministry of Economy and Competitiveness,No.PID2019-106498GB-I00(to MVS)the Instituto de Salud CarlosⅢ,Fondo Europeo de Desarrollo Regional“Una manera de hacer Europa”,No.PI19/00071(to MAB)+1 种基金Ministerio de Ciencia e Innovación Project,No.SAF2017-82736-C2-1-R(to MTMF)in Universidad Autónoma de MadridFundación Universidad Francisco de Vitoria(to JS)。
文摘Olfactory ensheathing glia promote axonal regeneration in the mammalian central nervous system,including retinal ganglion cell axonal growth through the injured optic nerve.Still,it is unknown whether olfactory ensheathing glia also have neuroprotective properties.Olfactory ensheathing glia express brain-derived neurotrophic factor,one of the best neuroprotectants for axotomized retinal ganglion cells.Therefore,we aimed to investigate the neuroprotective capacity of olfactory ensheating glia after optic nerve crush.Olfactory ensheathing glia cells from an established rat immortalized clonal cell line,TEG3,were intravitreally injected in intact and axotomized retinas in syngeneic and allogeneic mode with or without microglial inhibition or immunosuppressive treatments.Anatomical and gene expression analyses were performed.Olfactory bulb-derived primary olfactory ensheathing glia and TEG3 express major histocompatibility complex classⅡmolecules.Allogeneically and syngenically transplanted TEG3 cells survived in the vitreous for up to 21 days,forming an epimembrane.In axotomized retinas,only the allogeneic TEG3 transplant rescued retinal ganglion cells at 7 days but not at 21 days.In these retinas,microglial anatomical activation was higher than after optic nerve crush alone.In intact retinas,both transplants activated microglial cells and caused retinal ganglion cell death at 21 days,a loss that was higher after allotransplantation,triggered by pyroptosis and partially rescued by microglial inhibition or immunosuppression.However,neuroprotection of axotomized retinal ganglion cells did not improve with these treatments.The different neuroprotective properties,different toxic effects,and different responses to microglial inhibitory treatments of olfactory ensheathing glia in the retina depending on the type of transplant highlight the importance of thorough preclinical studies to explore these variables.
基金supported by the National Institute on Aging (NIA)National Institutes of Health (NIH)+3 种基金Nos.K99AG065645,R00AG065645R00AG065645-04S1 (to SK)NIH research grants,NINDS,No.R01 NS115834NINDS/NIA,No.R01 NS115834-02S1 (to LG)。
文摘Gamma-aminobutyric acid(GABA)ergic neurons,the most abundant inhibitory neurons in the human brain,have been found to be reduced in many neurological disorders,including Alzheimer's disease and Alzheimer's disease-related dementia.Our previous study identified the upregulation of microRNA-502-3p(miR-502-3p)and downregulation of GABA type A receptor subunitα-1 in Alzheimer's disease synapses.This study investigated a new molecular relationship between miR-502-3p and GABAergic synapse function.In vitro studies were perfo rmed using the mouse hippocampal neuronal cell line HT22 and miR-502-3p agomiRs and antagomiRs.In silico analysis identified multiple binding sites of miR-502-3p at GABA type A receptor subunitα-1 mRNA.Luciferase assay confirmed that miR-502-3p targets the GABA type A receptor subunitα-1 gene and suppresses the luciferase activity.Furthermore,quantitative reve rse transcription-polymerase chain reaction,miRNA in situ hybridization,immunoblotting,and immunostaining analysis confirmed that overexpression of miR-502-3p reduced the GABA type A receptor subunitα-1 level,while suppression of miR-502-3p increased the level of GABA type A receptor subunitα-1 protein.Notably,as a result of the overexpression of miR-502-3p,cell viability was found to be reduced,and the population of necrotic cells was found to be increased.The whole cell patch-clamp analysis of human-GABA receptor A-α1/β3/γ2L human embryonic kidney(HEK)recombinant cell line also showed that overexpression of miR-502-3p reduced the GABA current and overall GABA function,suggesting a negative correlation between miR-502-3p levels and GABAergic synapse function.Additionally,the levels of proteins associated with Alzheimer s disease were high with miR-502-3p overexpression and reduced with miR-502-3p suppression.The present study provides insight into the molecular mechanism of regulation of GABAergic synapses by miR-502-3p.We propose that micro-RNA,in particular miR-502-3p,could be a potential therapeutic to rget to modulate GABAergic synapse function in neurological disorders,including Alzheimer's disease and Alzheimer's diseaserelated dementia.
基金supported by the German Research Foundation DFG grant GA 654/13-2 to OG。
文摘De novo mutations in genes encoding K^(+)channels are implicated in many severe neurodevelopmental disorders.Specifically,mutations in KCNA2,encoding the Shaker-type voltage-gated K^(+)channel Kv1.2,and KCNJ2,encoding the inwardly rectifying K^(+)channel Kir2.1,associate with focal and generalized epilepsies,brain atrophy,autism,ataxia and hereditary spastic paraplegia(Syrbe et al.,2015;Masnada et al.,2017;Cheng et al.,2021).
基金supported by the Chongqing Science and Technology CommitteeNatural Science Foundation of Chongqing,No.cstc2021jcyj-msxmX0065 (to YL)。
文摘Autism spectrum disorders are a group of neurodevelopmental disorders involving more than 1100 genes,including Ctnnd2 as a candidate gene.Ctnnd2knockout mice,serving as an animal model of autis m,have been demonstrated to exhibit decreased density of dendritic spines.The role of melatonin,as a neuro hormone capable of effectively alleviating social interaction deficits and regulating the development of dendritic spines,in Ctnnd2 deletion-induced nerve injury remains unclea r.In the present study,we discove red that the deletion of exon 2 of the Ctnnd2 gene was linked to social interaction deficits,spine loss,impaired inhibitory neurons,and suppressed phosphatidylinositol-3-kinase(PI3K)/protein kinase B(Akt) signal pathway in the prefrontal cortex.Our findings demonstrated that the long-term oral administration of melatonin for 28 days effectively alleviated the aforementioned abnormalities in Ctnnd2 gene-knockout mice.Furthermore,the administration of melatonin in the prefro ntal cortex was found to improve synaptic function and activate the PI3K/Akt signal pathway in this region.The pharmacological blockade of the PI3K/Akt signal pathway with a PI3K/Akt inhibitor,wo rtmannin,and melatonin receptor antagonists,luzindole and 4-phenyl-2-propionamidotetralin,prevented the melatonin-induced enhancement of GABAergic synaptic function.These findings suggest that melatonin treatment can ameliorate GABAe rgic synaptic function by activating the PI3K/Akt signal pathway,which may contribute to the improvement of dendritic spine abnormalities in autism spectrum disorders.
文摘BACKGROUND Paragangliomas(PG)are rare neoplasms of neuroendocrine origin that tend to be highly vascularized,slow-growing,and usually sporadic.To date,common treatment options are surgical resection(SR),with or without radiation therapy(RT),and a watch-and-wait approach.AIM To evaluate the local control and effectiveness of exclusive fractionated stereotactic RT(FSRT)treatment in unresectable PG(uPG).METHODS We retrospectively evaluated patients with uPG(medically inoperable or refused SR)treated with FSRT with a Cyberknife System(Accuray Incorporated,Sunnyvale,California).Toxicity and initial efficacy were evaluated.RESULTS From May 2009 to January 2023,6 patients with a median age of 68(range 20-84)were treated with FSRT.The median delivered dose was 21 Gy(range 20-30 Gy)at a median isodose line of 75.5%(range 70%-76%)in 4 fractions(range 3-5 fractions).The median volume was 13.6 mL(range 12.4-65.24 mL).The median cumulative biological effective dose and equivalent dose in 2-Gy fractions were 70 Gy and 37.10 Gy respectively.Site of origin involved were the timpa-nojugular glomus(4/6),temporal bone,and cervical spine.In 1 of the 6 patients,the follow-up was insufficient;5 of 6 patients showed a 5-year overall survival and 5-year progression-free survival of 100%.We observed negligible toxicities during and after RT.The majority of patients showed stable symptoms during follow-up.Only 1 patient developed spine metastases.CONCLUSION Our preliminary results on this small cohort of patients suggest that FSRT could be an effective and safe alternative to SR.
文摘BACKGROUND Previous assessments of stem cell therapy for spinal cord injuries(SCI)have encountered challenges and constraints.Current research primarily emphasizes safety in early-phase clinical trials,while systematic reviews prioritize effectiveness,often overlooking safety and translational feasibility.This situation prompts inquiries regarding the readiness for clinical adoption.AIM To offer an up-to-date systematic literature review of clinical trial results concerning stem cell therapy for SCI.METHODS A systematic search was conducted across major medical databases[PubMed,Embase,Reference Citation Analysis(RCA),and Cochrane Library]up to October 14,2023.The search strategy utilized relevant Medical Subject Heading(MeSH)terms and keywords related to"spinal cord","injury","clinical trials","stem cells","functional outcomes",and"adverse events".Studies included in this review consisted of randomized controlled trials and non-randomized controlled trials reporting on the use of stem cell therapies for the treatment of SCI.RESULTS In a comprehensive review of 66 studies on stem cell therapies for SCI,496 papers were initially identified,with 237 chosen for full-text analysis.Among them,236 were deemed eligible after excluding 170 for various reasons.These studies encompassed 1086 patients with varying SCI levels,with cervical injuries being the most common(42.2%).Bone marrow stem cells were the predominant stem cell type used(71.1%),with various administration methods.Follow-up durations averaged around 84.4 months.The 32.7%of patients showed functional improvement from American spinal injury association Impairment Scale(AIS)A to B,40.8%from AIS A to C,5.3%from AIS A to D,and 2.1%from AIS B to C.Sensory improvements were observed in 30.9%of patients.A relatively small number of adverse events were recorded,including fever(15.1%),headaches(4.3%),muscle tension(3.1%),and dizziness(2.6%),highlighting the potential for SCI recovery with stem cell therapy.CONCLUSION In the realm of SCI treatment,stem cell-based therapies show promise,but clinical trials reveal potential adverse events and limitations,underscoring the need for meticulous optimization of transplantation conditions and parameters,caution against swift clinical implementation,a deeper understanding of SCI pathophysiology,and addressing ethical,tumorigenicity,immunogenicity,and immunotoxicity concerns before gradual and careful adoption in clinical practice.
文摘Objective To investigate the pretreatment effects of Rhodiola rosea (R. rosea) extract on cognitive dysfunction, oxidative stress in hippocampus and hippocampal neuron injury in a rat model of Alzheimer's disease (AD). Methods Male Sprague-Dawley rats were pretreated with R. rosea extract at doses of 1.5, 3.0, and 6.0 g/kg for 3 weeks, followed by bilateral intracerebroventricular injection with streptozotocin (1.5 mg/kg) on days 1 and 3. Behavioral alterations were monitored after 2 weeks from the lesion using Morris water maze task. Three weeks after the lesion, the rats were sacrificed for measuring the malondialdehyde (MDA), glutathione reductase (GR) and reduced glutathione (GSH) levels in hippocampus and histopathology of hippocampal neurons. Results The MDA level was significantly increased while the GR and GSH levels were significantly decreased with striking impairments in spatial learning and memory and severe damage to hippocampal neurons in the model rat induced by intracerebroventricular injection of streptozotocin. These abnormalities were significantly improved by pretreatment with R. rosea extract (3.0 g/kg). Conclusion R. rosea extract can protect rats against cognitive deficits, neuronal injury and oxidative stress induced by intracerebroventricular injection of streptozotocin, and may be used as a potential agent in treatment of neurodegenerative diseases such as AD.
文摘It is unanimously accepted that stroke is a highly heterogeneous disorder. Different subtypes of ischemic stroke may have different risk factors, clinical features, and prognoses. The aim of this study was to evaluate the risk factors, clinical characteristics, and prognoses of different subtypes of ischemic stroke defined by the Trial of ORG10172 in Acute Stroke Treatment (TOAST) criteria. We prospectively analyzed the data from 530 consecutive patients who were admitted to our hospital with acute ischemic stroke within 7 days of stroke onset during the study period. Standardized data assessment was used and the cause of ischemic stroke was classified according to the TOAST criteria. Patients were followed up till 30 and 90 days after stroke onset. It was found that large-artery atherosclerosis was the most frequent etiology of stroke (37.4%), and showed the highest male preponderance, the highest prevalence of previous transient ischemic attack, and the longest hospital stay among all subtypes. Small artery disease (36.4%) was associated with higher body mass index, higher plasma triglycerides, and lower plasma high-density lipoprotein cholesterol than cardioembolism. Cardioembolism (7.7%), which was particularly common in the elderly (i.e., individuals aged 65 years and older), showed the highest female preponderance, the highest prevalence of atrial fibrillation, the earliest presentation to hospital after stroke onset, the most severe symptoms on admission, the maximum complications associated with an adverse outcome, and the highest rate of stroke recurrence and mortality. Our results suggest that ischemic stroke should be regarded as a highly heterogeneous disorder. Studies involving risk factors, clinical features, and prognoses of ischemic stroke should differentiate between etiologic stroke subtypes.
基金supported by the Guangdong Province Science and Technology Plan,No.2010B030700008the Guangzhou Science and Technology Plan Application Foundation,No.2012J4300062the Major Project of Science and Technology Plan of Dongguan City in 2012,No.2012105102022
文摘Peripheral nerve injury not only affects the site of the injury, but can also induce neuronal apop- tosis at the spinal cord. However, many acupuncture clinicians still focus only on the injury site, selecting acupoints entirely along the injured nerve trunk and neglecting other regions; this may delay onset of treatment efficacy and rehabilitation. Therefore, in the present study, we compared the clinical efficacy of acupuncture at Governor vessel and local meridian acupoints combined (GV/LM group) with acupuncture at local meridian acupoints alone (LM group) in the treatment of patients with peripheral nerve injury. In the GV/LM group (n = 15), in addition to meridian acupoints at the injury site, the following acupoints on the Governor vessel were stimulated: Baihui (GV20), Fengfu (GV16), Dazhui (GV14), and Shenzhu (GV12), selected to treat nerve injury of the upper limb, and Jizhong (GV6), Mingmen (GV4), Yaoyangguan (GV3), and Yaoshu (GV2) to treat nerve injury of the lower limb. In the LM group (n = 15), only me- ridian acupoints along the injured nerve were selected. Both groups had electroacupuncture treatment for 30 minutes, once a day, 5 times per week, for 6 weeks. Two cases dropped out of the LM group. A good or excellent clinical response was obtained in 80% of the patients in the GV/ LM group and 38.5% of the LM group. In a second study, an additional 20 patients underwent acupuncture with the same prescription as the GV/LM group. Electomyographic nerve conduc- tion tests were performed before and after acupuncture to explore the mechanism of action of the treatment. An effective response was observed in 80.0% of the patients, with greater motor nerve conduction velocity and amplitude after treatment, indicating that electroacupuncture on specific Governor vessel acupoints promotes functional motor nerve repair after peripheral nerve injury. In addition, electromyography was performed before, during and after electroacu- puncture in one patient with radial nerve injury. After a single session, the patient's motor nerve conduction velocity increased by 23.2%, indicating that electroacupuncture at Governor vessel acupoints has an immediate therapeutic effect on peripheral nerve injury. Our results indicate that Governor vessel and local meridian acupoints used simultaneously promote functional repair after peripheral nerve injury. The mechanism of action may arise from an improvement of the local microenvironment in injured nervous tissue, as well as immediate effects of Governor vessel and local meridian acupoint stimulation to ensure the continuity between the peripheral and central nervous systems.
基金supported by the Natural Science Foundation of Chongqing Science and Technology Committee (CSTC,2006BB5298)Sci & Tech Project of Chongqing Municipal Education Commission(KJ080302)
文摘Objective: To get better recognition of central neurocytoma and diminish misdiagnosis. Methods: A retrospective review identified 15 cases of central neurocytoma. All cases of central neurocytoma were analyzed for their clinical symptoms, pathologic changes, immunohistochemical staining, prognosis and differential diagnosis. Clinical follow up was performed. Results: There were 8 males and 7 females aged 10-64 years (median 32.93 years). The most common presenting symptoms were those related to increased intracranial pressure (ICP), including headache (100%), papilledema (93 %) and vomiting (80%). All tumors were located in the ventricular system. The tumors were composed of uniform cells with round nuclei and a fine chromatin pattern, and in some areas, small cells with perinuclear halo could be seen. In particular, the anuclear areas may have a fine fibrillary matrix (neuropil). Nuclear atypia and vascular proliferation appeared in two cases, respectively. Focal necrosis could be seen in one case. Immunohistochemical findings included expression of synaptophysin (15/15), neuron specific enolase (12/15) and glial fibrillary acidic protein (GFAP) (3/15). MIB-1 proliferation index ranged from 0.8- 12.5%, and was more than 2% in 3 of 15 cases assessed. Follow-up information of 11 patients was available. Conclusions: Central neurocytoma has a favorable prognosis in general, but in some cases, the clinical course could be aggressive. Increase of GFAP positivity, proliferation index and vascular proliferation might suggest a more malignant process.
基金supported by the National Natural Science Foundation of China,No.81160158 and 30860290
文摘This study investigated the possible involvement of microRNAs in the regulation of genes that participate in peripheral neural regeneration. A microRNA microarray analysis was conducted and 23 microRNAs were identiifed whose expression was signiifcantly changed in rat dorsal root ganglia after sciatic nerve transection. The expression of one of the downregulated microRNAs, microRNA-214, was validated using quantitative reverse transcriptase-PCR. MicroRNA-214 was predicted to target the 3′-untranslated region of Slit-Robo GTPase-activating protein 3. In situ hybridization veriifed that microRNA-214 was located in the cytoplasm of dorsal root ganglia primary neurons and was downregulated following sciatic nerve transection. Moreover, a com-bination of in situ hybridization and immunohistochemistry revealed that microRNA-214 and Slit-Robo GTPase-activating protein 3 were co-localized in dorsal root ganglion primary neu-rons. Western blot analysis suggested that Slit-Robo GTPase-activating protein 3 was upregulated in dorsal root ganglion neurons after sciatic nerve transection. These data demonstrate that mi-croRNA-214 is located and differentially expressed in dorsal root ganglion primary neurons and may participate in regulating the gene expression of Slit-Robo GTPase-activating protein 3 after sciatic nerve transection.
基金supported by Brazilian grants from Fundacao de Amparo à Pesquisa do Estado de Sao Paulo(FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico(CNPq)CAPES
文摘Studies have confirmed that bone marrow-derived mesenchymal stem cells (MSCs) can be used for treatment of several nervous system diseases. However, isolation of bone marrow-derived MSCs (BMSCs) is an invasive and painful process and the yield is very low. Therefore, there is a need to search for other alterative stem cell sources. Adipose-derived MSCs (ADSCs) have phenotypic and gene expression profiles similar to those of BMSCs. The production of ADSCs is greater than that of BMSCs, and ADSCs proliferate faster than BMSCs. To compare the effects of venous grafts containing BMSCs or ADSCs on sciatic nerve injury, in this study, rats were randomly divided into four groups: sham (only sciatic nerve exposed), Matrigel (MG; sciatic nerve injury + intravenous transplantation of MG vehicle), ADSCs (sciatic nerve injury + intravenous MG containing ADSCs), and BMSCs (sciatic nerve injury + intravenous MG containing BMSCs) groups. Sciatic functional index was calculated to evaluate the function of injured sciatic nerve. Morphologic characteristics of nerves distal to the lesion were observed by toluidine blue staining. Spinal motor neurons labeled with Fluoro-Gold were quantitatively assessed. Compared with sham-operated rats, sciatic functional index was lower, the density of small-diameter fibers was significantly increased, and the number of motor neurons significantly decreased in rats with sciatic nerve injury. Neither ADSCs nor BMSCs significantly improved the sciatic nerve function of rats with sciatic nerve injury,increased fiber density, fiber diameters, axonal diameters, myelin sheath thickness, and G ratios (axonal diameter/fiber diameter ratios) in the sciatic nerve distal to the lesion site. There was no significant difference in the number of spinal motor neurons among ADSCs, BMSCs and MG groups. These results suggest that neither BMSCs nor ADSCs provide satisfactory results for peripheral nerve repair when using MG as the conductor for engraftment.
文摘Far lateral lumbar disc herniations(FLLDH)represent a separate category of disc pathology which includes both intraforaminal and extraforaminal lumbar disc herniations,that are characterized by a peculiar clinical presentation,diagnostic and treatment modalities as compared to the more frequent median and paramedian disc hernias.Surgical treatment often represents the only effective weapon for the cure of this disease and over the years different approaches have been developed that can reach the region of the foramen or external to it,with different degrees of invasiveness.The diagnosis is more demanding and still underestimated as it requires a more detailed knowledge in the spine anatomy and dedicated radiological studies.Computerized tomography and in particular magnetic resonance imaging are the appropriate tools for the diagnosis of FLLDH.Despite the widespread use of these diagnostic tests,many cases of FLLDH are overlooked due to insufficiently detailed radiological examinations or due to the execution of exams not focused to the foraminal or the extraforaminal region.Neurophysiological studies represent a valid aid in the diagnostic classification of this pathology and in some cases they can facilitate the differential diagnosis with other types of radiculopathies.In the present study,a comprehensive review of the clinical presentation,epidemiology,radiological study and the neurophysiological aspects is presented.
文摘Charcot-Marie-Tooth neuropathies(CMT)constitute a group of common but highly heterogeneous,non-syndromic genetic disorders affecting predominantly the peripheral nervous system.CMT type 1A(CMT1A)is the most frequent type and accounts for almost~50%of all diagnosed CMT cases.CMT1A results from the duplication of the peripheral myelin protein 22(PMP22)gene.Overexpression of PMP22 protein overloads the protein folding apparatus in Schwann cells and activates the unfolded protein response.This leads to Schwann cell apoptosis,dys-and de-myelination and secondary axonal degeneration,ultimately causing neurological disabilities.During the last decades,several different gene therapies have been developed to treat CMT1A.Almost all of them remain at the pre-clinical stage using CMT1A animal models overexpressing PMP22.The therapeutic goal is to achieve gene silencing,directly or indirectly,thereby reversing the CMT1A genetic mechanism allowing the recovery of myelination and prevention of axonal loss.As promising treatments are rapidly emerging,treatment-responsive and clinically relevant biomarkers are becoming necessary.These biomarkers and sensitive clinical evaluation tools will facilitate the design and successful completion of future clinical trials for CMT1A.
文摘Spinal cord injury is a major cause of disability with devastating neurological outcomes and lim-ited therapeutic opportunities, even though there are thousands of publications on spinal cord injury annually. There are two major types of spinal cord injury, transaction of the spinal cord and spinal cord contusion. Both can theoretically be treated, but there is no well documented treatment in human being. As for spinal cord contusion, we have developed an operation with fabulous result.
文摘One of the major problems of modern neurobiology is how to replace dead or damaged neurons in the human brain or spinal cord after injury or as a consequence of neurodegenerative dis- eases. In fact, because adult mammalian neurons are post-mi- totic cells that cannot divide to replace dead cells, loss due to lesion or disease is permanent. Furthermore, surviving neurons have modest capacity to regenerate their damaged axons and re-establish functional connections. Thus, a gradual neurode- generative scenario with certain similarities in stroke, brain or spinal cord injuries and neurological diseases like Alzheimer's disease is produced. These conditions represent the major disease burden of the modern world in terms of mortality, dis- ability, productivity loss and health-care costs (World Health Organization, 2008). While much effort has been directed to understand the molecular and cellular mechanisms involved in the pathology of these diseases to set new effective treatments, many neuroprotective and regenerative approaches, although showing positive results in preclinical studies, have so far failed to provide strong benefit to patients.
基金Supported by Grant 50633 from CONACyT to Jiménez-Anguiano A
文摘AIM: To analyze the polygraphic sleep patterns during cirrhosis progression in a rat model by repeated CCh administration. METHODS: Male Wistar rats received three weekly injections of CCl4 for 11 wk, and were analyzed before and during the induction of cirrhosis. Rats were im- planted with electrodes to record their sleep patterns. Polygraph recordings were made weekly over 11 wk for 8 h, during the light period. After a basal recording, rats received three weekly injections of CCl4. Histological confirmation of cirrhosis was performed after 11 wk. RESULTS: The results showed a progressive decrease in total wake time that reached statistical significance from the second week of treatment. In addition, there was an increase in total time of slow wave sleep (SWS)Ⅱ and rapid eye movement sleep (REM sleep) in most of the 11 wk. SWS I showed no significant variations. During the final weeks, a significant increase in REM sleep frequency was also observed. Histological analyses of the livers showed unequivocal signs of cirrhosis. CONCLUSION: These data suggest that hepatic failure produced by CCh administration is capable of modifying the sleep pattern even after only a few doses.
基金supported by the National Basic Research Program of China(2015CB351806)the National Natural Science Foundation of China(61806011,61825101,61425025,and U1611461)+4 种基金the National Postdoctoral Program for Innovative Talents(BX20180005)the China Postdoctoral Science Foundation(2018M630036)the International Talent Exchange Program of Beijing Municipal Commission of Science and Technology(Z181100001018026)the Zhejiang Lab(2019KC0AB03 and 2019KC0AD02)the Royal Society Newton Advanced Fellowship(NAF-R1-191082).
文摘A neuroprosthesis is a type of precision medical device that is intended to manipulate the neuronal signals of the brain in a closed-loop fashion,while simultaneously receiving stimuli from the environment and controlling some part of a human brain or body.Incoming visual information can be processed by the brain in millisecond intervals.The retina computes visual scenes and sends its output to the cortex in the form of neuronal spikes for further computation.Thus,the neuronal signal of interest for a retinal neuroprosthesis is the neuronal spike.Closed-loop computation in a neuroprosthesis includes two stages:encoding a stimulus as a neuronal signal,and decoding it back into a stimulus.In this paper,we review some of the recent progress that has been achieved in visual computation models that use spikes to analyze natural scenes that include static images and dynamic videos.We hypothesize that in order to obtain a better understanding of the computational principles in the retina,a hypercircuit view of the retina is necessary,in which the different functional network motifs that have been revealed in the cortex neuronal network are taken into consideration when interacting with the retina.The different building blocks of the retina,which include a diversity of cell types and synaptic connections-both chemical synapses and electrical synapses(gap junctions)-make the retina an ideal neuronal network for adapting the computational techniques that have been developed in artificial intelligence to model the encoding and decoding of visual scenes.An overall systems approach to visual computation with neuronal spikes is necessary in order to advance the next generation of retinal neuroprosthesis as an artificial visual system.
基金supported by the National Natural Science Foundation of China,No.81471279 and No.81171138(to WJZ)Talent Support Grant from Shantou University Medical College,China,No.2501220118(to WJZ)the Li Kashing Foundation,No.LD030302(to MS)
文摘Oxidative stress contributes to the pathogenesis of neurodegenerative diseases.With the aim to find reagents that reduce oxidative stress,a phage display library was screened for peptides mimicking a2,6-sialyllactose(6'-SL),which is known to beneficially influence neural functions.Using Sambucus nigra lectin,which specifically binds to 6'-SL,we screened a phage display library and found a peptide comprising identical sequences of 12 amino acids.Mimetic peptide,reverse peptide and scrambled peptide were tested for inhibition of 6'-SL binding to the lectin.Indeed,lectin binding to 6'-SL was inhibited by the most frequently identified mimetic peptide,but not by the reverse or scrambled peptides,showing that this peptide mimics 6'-SL.Functionally,mimetic peptide,but not the reverse or scrambled peptides,increased viability and expression of neural cell adhesion molecule L1 in SK-N-SH human neuroblastoma cells,and promoted survival and neurite outgrowth of cultured mouse cerebellar granule neurons challenged by H_20_2-induced oxidative stress.The combined results indicate that the 6'-SL mimetic peptide promotes neuronal survival and neuritogenesis,thus raising hopes for the treatment of neurodegenerative diseases.This study was approved by the Medical Ethics Committee of Shantou University Medical College,China(approval No.SUMC 2014-004)on February 20,2014.