期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Comparative QTL Mapping of Resistance to Gray Leaf Spot in Maize Based on Bioinformatics 被引量:19
1
作者 SHI Li-yu LI Xin-hai +5 位作者 HAO Zhuan-fang XIE Chuan-xiao JI Hai-lian LUE Xiang-ling ZHANG Shi-huang PAN Guang-tang 《Agricultural Sciences in China》 CAS CSCD 2007年第12期1411-1419,共9页
The integration QTL map for gray leaf spot resistance in maize was constructed by compiling a total of 57 QTLs available with genetic map IBM2 2005 neighbors as reference. Twenty-six "real QTLs" and seven consensus ... The integration QTL map for gray leaf spot resistance in maize was constructed by compiling a total of 57 QTLs available with genetic map IBM2 2005 neighbors as reference. Twenty-six "real QTLs" and seven consensus QTLs were identified by refining these 57 QTLs using overview and meta-analysis approaches. Seven consensus QTLs were found on chromosomes 1.06, 2.06, 3.04, 4.06, 4.08, 5.03, and 8.06, and the map coordinates were 552.53,425.72, 279.20, 368.97, 583.21, 308.68 and 446.14 cM, respectively. Using a synteny conservation approach based on comparative mapping between the maize genetic map and rice physical map, a total of 69 rice and maize resistance genes collected from websites Gramene and MaizeGDB were projected onto the maize genetic map IBM2 2005 neighbors, and 2 (Rgene32, htl), 4 (RgeneS, rp3, scmv2, wsm2), and 4 (ht2, Rgene6, Rgene8 and Rgene7) positional candidate genes were found in three consensus QTLs on chromosomes 2.06, 3.04, and 8.06, respectively. The results suggested that the combination of meta-analysis of gray leaf spot in maize and sequence homologous comparison between maize and rice could be an efficient strategy for identifying major QTLs and corresponding candidate genes for the gray leaf spot. 展开更多
关键词 maize (Zea mays L.) gray leaf spot quantitative trait loci positional candidate gene META-ANALYSIS
在线阅读 下载PDF
The Genetic Architecture of Flowering Time and Photoperiod Sensitivity in Maize as Revealed by QTL Review and Meta Analysis 被引量:14
2
作者 Jie Xu Yaxi Liu +7 位作者 Jian Liu Moju Cao Jing Wang Hai Lan Yunbi Xu Yanli Lu Guangtang Pan Tingzhao Rong 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2012年第6期358-373,共16页
The control of flowering is not only important for reproduction, but also plays a key role in the processes of domestication and adaptation. To reveal the genetic architecture for flowering time and photoperiod sensit... The control of flowering is not only important for reproduction, but also plays a key role in the processes of domestication and adaptation. To reveal the genetic architecture for flowering time and photoperiod sensitivity, a comprehensive evaluation of the relevant literature was performed and followed by meta analysis. A total of 25 synthetic con- sensus quantitative trait loci (QTL) and four hot-spot genomic regions were identified for photoperiod sensitivity including 11 genes related to photoperiod response or flower morphogenesis and development. Besides, a comparative analysis of the QTL for flowering time and photoperiod sensitivity highlighted the regions containing shared and unique QTL for the two traits. Candidate genes associated with maize flowering were identified through integrated analysis of the homologous genes for flowering time in plants and the consensus QTL regions for photoperiod sensitivity in maize (Zea mays L.). Our results suggest that the combination of literature review, meta-analysis and homologous blast is an efficient approach to identify new candidate genes and create a global view of the genetic architecture for maize photoperiodic flowering. Sequences of candidate genes can be used to develop molecular markers for various models of marker-assisted selection, such as marker-assisted recurrent selection and genomic selection that can contribute significantly to crop environmental adaptation. 展开更多
关键词 MAIZE flowering time photoperiod sensitivity META-ANALYSIS consensus quantitative trait loci (cQTL) molecular breeding.
原文传递
Gm NAC15 overexpression in hairy roots enhances salt tolerance in soybean 被引量:12
3
作者 LI Ming HU Zheng +4 位作者 JIANG Qi-yan SUN Xian-jun GUO Yuan QI Jun-cang ZHANG Hui 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2018年第3期530-538,共9页
The NAC (NAM, ATAF1/2 and CUC2) transcription factor family plays a key role in plant development and responses to abiotic stress. GmNAC15 (Glyma 15g40510.1), a member of the NAC transcription factor family in soy... The NAC (NAM, ATAF1/2 and CUC2) transcription factor family plays a key role in plant development and responses to abiotic stress. GmNAC15 (Glyma 15g40510.1), a member of the NAC transcription factor family in soybean, was functionally characterized, especially with regard to its role in salt tolerance. In the present study, qRT-PCR (quantitative reverse transcription PCR) analysis indicated that GmNAC15 was induced by salt, drought, low temperature stress, and ABA treatment in roots and leaves. GmNAC15 overexpression in soybean (Glycine max) hairy roots enhanced salt tolerance. Transgenic hairy roots improved the survival of wild leaves; however, overexpression of GmNAC15 in hairy root couldn't influnce the expression level of GmNAC15 in leaf. GmNAC15 regulates the expression levels of genes responsive to salt stress. Altogether, these results provide experimental evidence of the positive effect of GmNAC15 on salt tolerance in soybean and the potential application of genetic manipulation to enhance the salt tolerance of important crops. 展开更多
关键词 NAC salt tolerance SOYBEAN hairy roots
在线阅读 下载PDF
Assessment of Lipid Transfer Protein (LTP1) Gene in Wheat Powdery Mildew Resistance 被引量:1
4
作者 LI Ai-li MENG Cheng-sheng +2 位作者 ZHOU Rong-hua MA Zhi-ying JIA Ji-zeng 《Agricultural Sciences in China》 CAS CSCD 2006年第4期241-249,共9页
This study is to investigate the role of lipid transfer protein (LTP1) gene of wheat (Triticum aestivum L.) in powdery mildew (Blumeria graminis f.sp. tritici, Bgt) resistance. A pair of primers based on the ful... This study is to investigate the role of lipid transfer protein (LTP1) gene of wheat (Triticum aestivum L.) in powdery mildew (Blumeria graminis f.sp. tritici, Bgt) resistance. A pair of primers based on the full length cDNA of wheat LTP1 was used for amplifying the coding regions of LTP in hexaploid (AABBDD) wheat and its diploid donors T. urartu (AA), Ae. speltoides ssp speltoide (SS) and Ae. tauchii ssp strangulate (DD). LTP1 and LTP2 of wheat were isolated from the tested two hexaploid (ABD) materials: powdery mildew resistance near isogenic line (NIL) Mardler/7 × Bainong 3217 and its susceptible parent Bainong 3217 at the same time, while only one kind ofLTP gene was found in the tested three diploid materials respectively by using the above PCR primer pairs. Two peaks of the expression of LTP1 and LTP2 induced by powdery mildew were observed [one occurred at 3 h after inoculation (hai); the other occurred at 10 hai] in resistant NIL Mardler/7 × Bainong3217 in comparison with a steady transcript level of LTP1 and LTP2 in susceptible Bainong3217. Transient over-expression result showed that LTP1 reduced the penetration efficiency (PE) of powdery mildew in susceptible cultivar by about 28.3%. This result indicated an obvious effectiveness of LTP1 in powdery mildew resistance. Expression analysis also showed that LTP1 and LTP2 of wheat are generally involved in salt/drought, but not in low temperature stress early responses. 展开更多
关键词 transient expression assay powdery mildew WHEAT LTP
在线阅读 下载PDF
High-Molecular-Weight Glutenin Subunit Composition of Chinese Wheat Germplasm 被引量:1
5
作者 ZHANG Ling-li LI Xiu-quan +3 位作者 YANG Xin-ming LI Hong-jie WANG Hui LI Li-hui 《Agricultural Sciences in China》 CAS CSCD 2007年第8期899-907,共9页
The objective of the present study was to characterize the high molecular glutenin subunits (HMW-GS) composition and the presence of 1B/1R translocation in newly developed wheat (Triticum aestivum L.) germplasm, w... The objective of the present study was to characterize the high molecular glutenin subunits (HMW-GS) composition and the presence of 1B/1R translocation in newly developed wheat (Triticum aestivum L.) germplasm, which have one or more traits that are useful in wheat improvement. Sodium dodecyl sulphate polyacrylamide-gel electrophoresis (SDS-PAGE) and acid polyacrylamide-gel electrophoresis (A-PAGE) were used to detect HMW-GS composition and the presence of 1B/1R wheat-rye (Secale cereale L.) chromosome translocation in the wheat germplasm. Bread-making quality scores of these lines were determined. A high level of variations in HMW-GS encoded by Glu-1 locus was observed. Sixteen major HMW-GS, with 30 combinations, were detected. The percentage of cultivars with more than two desirable subunits was 38.7%. Thirteen cultivars had bread-making quality scores of 10 in combination with one or two desirable agronomical traits, such as high-yield potential, dwarfing stem, resistance to diseases, and/or tolerance to abiotic stress. Sixty-eight (36.6%) cultivars possessed 1B/1R translocation. The newly developed germplasm with HMW-GS for good quality can be promising resources for improving bread-making quality of wheat. 展开更多
关键词 bread wheat high-molecular-weight glutenin subunits (HMW-GS) 1B/1R translocation
在线阅读 下载PDF
Comparative Proteomic Analysis of Wheat (Triticum aestivum L.) Hybrid Necrosis
6
作者 JIANG Qi-yan HU Zheng +1 位作者 PAN Xing-lai ZHANG Hui 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2013年第3期387-397,共11页
Hybrid necrosis is the gradual premature death of leaves or plants in certain Fj hybrids of wheat (Triticum aestivum L.). Comparison of protein expression in necrotic and normal wheat leaves showed that the abundanc... Hybrid necrosis is the gradual premature death of leaves or plants in certain Fj hybrids of wheat (Triticum aestivum L.). Comparison of protein expression in necrotic and normal wheat leaves showed that the abundance of 33 proteins was changed significantly, and 24 of these proteins were identified. These proteins were involved in plant growth and development, antioxidation, photosynthesis and carbon assimilation, amino acid and protein biosynthesis, cytological signal transduction, DNA and RNA modification, protein transport, folding and assembly according to their functions. The down-regulation of uroporphyrinogen decarboxylase and the up-regulation of lipoxygenases in necrotic leaves may be related to the oxidative stress in the necrotic cells. The heat shock proteins may play the cytoprotective role. The differential expression of photosynthesis and carbon assimilation related proteins indicated chlorophyll biosynthesis and chloroplast development were inhibited and might finally cause the gradual chlorosis and cell death in necrotic leaves. The results of this study give a comprehensive picture of the post-transcriptional response to necrosis in hybrid wheat leaves and serve as a platform for further characterization of gene function and regulation in wheat hybrid necrosis. 展开更多
关键词 hybrid necrosis proteomic WHEAT differentially expressed protein
在线阅读 下载PDF
Research Advances in Monitoring Agro-meteorological Disasters Using Remote Sensing
7
作者 Xueyan SUI Rujuan WANG +3 位作者 Huimin YAO Meng WANG Shaokun LI Xiaodong ZHANG 《Asian Agricultural Research》 2014年第11期68-71,74,共5页
Remote sensing is an important method for rapidly obtaining farmland information. Once meteorological disaster occurs,using the remote sensing technology to extract disaster area of crops and monitor disaster level ha... Remote sensing is an important method for rapidly obtaining farmland information. Once meteorological disaster occurs,using the remote sensing technology to extract disaster area of crops and monitor disaster level has great significance for evaluating disasters and making a timely remedy. This paper elaborated the importance of monitoring agro-meteorological disasters using remote sensing in current special historical period,overviewed remote sensing methods both at home and abroad,analyzed existing problems,made clear major problems to be solved in monitoring agro-meteorological disasters using remote sensing,and discussed the development prospect of the remote sensing technology. 展开更多
关键词 Agro-meteorological DISASTER REMOTE SENSING Monito
在线阅读 下载PDF
Analyses of a Glycine max Degradome Library Identify microRNA Targets and MicroRNAs that Trigger Secondary SiRNA Biogenesis 被引量:6
8
作者 Zheng Hu Qiyan Jiang +3 位作者 Zhiyong Ni Rui Chen Shuo Xu Hui Zhang 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2013年第2期160-176,共17页
Plant microRNAs (miRNAs) regulate gene expression mainly by guiding cleavage of target mRNAs. In this study, a degradome library constructed from different soybean (Glycine max (L.) Merr.) tissues was deep-seque... Plant microRNAs (miRNAs) regulate gene expression mainly by guiding cleavage of target mRNAs. In this study, a degradome library constructed from different soybean (Glycine max (L.) Merr.) tissues was deep-sequenced. 428 potential targets of small interfering RNAs and 25 novel miRNA families were identified. A total of 211 potential miRNA targets, including 174 conserved miRNA targets and 37 soybean- specific miRNA targets, were identified. Among them, 121 targets were first discovered in soybean. The signature distribution of soybean primary miRNAs (pri-miRNAs) showed that most pri-miRNAs had the characteristic pattern of Dicer processing. The biogenesis of TAS3 small interfering RNAs (siRNAs) was conserved in soybean, and nine Auxin Response Factors were identified as TAS3 siRNA targets. Twenty- three miRNA targets produced secondary small interfering RNAs (siRNAs) in soybean. These targets were guided by five miRNAs: gma-miR393, gma-miR1508, gma-miR1510, gma-miR1514, and novel-11. Multiple targets of these secondary siRNAs were detected. These 23 miRNA targets may be the putative novel TAS genes in soybean. Global identification of miRNA targets and potential novel TAS genes will nnntrihnltp, tn r~__~nrP.h nn th~ f, mP.tinn_~ nf miRNA~ in ~nvh^n 展开更多
关键词 miRNAs miRNA targets secondary siRNAs DEGRADOME Glycine max.
原文传递
Identification of Functional Genetic Variations Underlying Drought Tolerance in Maize Using SNP Markers 被引量:5
9
作者 Zhuanfang Hao Xinhai Li +7 位作者 Chuanxiao Xie Jianfeng Weng Mingshun Li Degui Zhang Xiaoling Liang Lingling Liu Sisi Liu Shihuang Zhang 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2011年第8期641-652,共12页
Single nucleotide polymorphism (SNP) is a common form of genetic variation and popularly exists in maize genome. An Illumina GoldenGate assay with 1 536 SNP markers was used to genotype maize inbred lines and identi... Single nucleotide polymorphism (SNP) is a common form of genetic variation and popularly exists in maize genome. An Illumina GoldenGate assay with 1 536 SNP markers was used to genotype maize inbred lines and identified the functional genetic variations underlying drought tolerance by association analysis. Across 80 lines, 1 006 polymorphic SNPs (65.5% of the total) in the assay with good call quality were used to estimate the pattern of genetic diversity, population structure, and familial relatedness. The analysis showed the best number of fixed subgroups was six, which was consistent with their original sources and results using only simple sequence repeat markers. Pairwise linkage disequilibrium (LD) and association mapping with phenotypic traits investigated under water-stressed and well-watered regimes showed rapid LD decline within 100–500 kb along the physical distance of each chromosome, and that 29 SNPs were associated with at least two phenotypic traits in one or more environments, which were related to drought-tolerant or drought-responsive genes. These drought-tolerant SNPs could be converted into functional markers and then used for maize improvement by marker-assisted selection. 展开更多
关键词 association analysis drought tolerance functional variation maize (Zea mays L.) single nucleotide polymorphism.
原文传递
Identification of MicroRNAs in Wild Soybean (Glycine soja) 被引量:8
10
作者 Rui Chen Zheng Hu Hui Zhang 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2009年第12期1071-1079,共9页
MicroRNAs (miRNAs) play important roles in post-transcriptional gene silencing by directing target mRNA cleavage or translational inhibition. Currently, hundreds of miRNAs have been identified in plants, but no repo... MicroRNAs (miRNAs) play important roles in post-transcriptional gene silencing by directing target mRNA cleavage or translational inhibition. Currently, hundreds of miRNAs have been identified in plants, but no report has been published of wild soybean (Glycine soja Sieb). We constructed a small-RNA library consisting of 2 880 sequences with high quality, in which 1 347 were 19-24 nt in length. By utilizing the miRNA, Rfam and domesticated soybean expressed sequence tag database, we have analyzed and predicted the secondary structure of these small RNAs. As a result, t5 conserved miRNA candidates belonging to eight different families and nine novel miRNA candidates comprising eight families were identified in wild soybean seedlings. All these miRNA candidates were validated by northern blot and the novel candidates expressed in a tissue-specific manner. Furthermore, putative target genes were predicted for novel miRNA candidates and two of them were verified by 5'-rapid amplification of cDNA ends experiments. These results provided useful information for miRNA research in wild soybean and plants. 展开更多
关键词 MICRORNAS PLANTS wild soybean.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部