Soil-structure interfaces(SSI)are common in geotechnical structures,and understanding their shear behavior is essential for effective design.However,the coupling effects of particle shape and interface roughness on SS...Soil-structure interfaces(SSI)are common in geotechnical structures,and understanding their shear behavior is essential for effective design.However,the coupling effects of particle shape and interface roughness on SSI remain understudied.This study addresses this gap by employing five types of super-ellipsoid particles with varying asphericity(η)values to model non-spherical particles.Interface shear tests with different roughness levels(Rn)were conducted using Discrete Element Method(DEM)simulations.The results show that bothηand Rn significantly influence shear strength,localized shear band thickness,and soil fabric,with two types of coupling effects:single-factor dominance and double-factor interaction.The influence on coordination number(C_(n))and probability distribution of normalized contact force is more straightforward.Specifically,non-spherical particles exhibit a higher initial C_(n) due to enhanced interlocking,while Rn has a lesser impact.The normalized contact force at the interface follows an exponential distribution,similar to pure soil,and is largely independent of η and Rn.Notably,the shear zone is divided into three equal parts for soil fabric analysis.These findings offer new insights into SSI,contributing to more effective and safer geotechnical designs.展开更多
基金The authors sincerely appreciate the financial support from the National Natural Science Foundation of China(grant No.52278364)the Shenzhen Science and Technology Plan(grant No.20220808143139001)Shenzhen University 2035 Program for Excellent Research(grant No.2022B007)。
文摘Soil-structure interfaces(SSI)are common in geotechnical structures,and understanding their shear behavior is essential for effective design.However,the coupling effects of particle shape and interface roughness on SSI remain understudied.This study addresses this gap by employing five types of super-ellipsoid particles with varying asphericity(η)values to model non-spherical particles.Interface shear tests with different roughness levels(Rn)were conducted using Discrete Element Method(DEM)simulations.The results show that bothηand Rn significantly influence shear strength,localized shear band thickness,and soil fabric,with two types of coupling effects:single-factor dominance and double-factor interaction.The influence on coordination number(C_(n))and probability distribution of normalized contact force is more straightforward.Specifically,non-spherical particles exhibit a higher initial C_(n) due to enhanced interlocking,while Rn has a lesser impact.The normalized contact force at the interface follows an exponential distribution,similar to pure soil,and is largely independent of η and Rn.Notably,the shear zone is divided into three equal parts for soil fabric analysis.These findings offer new insights into SSI,contributing to more effective and safer geotechnical designs.