Discrete element method(DEM)-based simulations are crucial for bridging macro and micro research,particularly owing to the limitations of experimental methods.This paper reviews the simulation techniques used for part...Discrete element method(DEM)-based simulations are crucial for bridging macro and micro research,particularly owing to the limitations of experimental methods.This paper reviews the simulation techniques used for particle breakage in DEM,summarizes the research status,and discusses pertinent issues to outline future prospects for particle breakage simulation.Fragment replacement method(FRM)and bonded particle method(BPM)are widely used to simulate particle breakage based on DEM.In BPM models,sub-particle size selection,particle cluster generation mode,and bonding parameters are crucial considerations.Although BPM can simulate the breakage of particles with complex shapes,it cannot re-simulate them,posing difficulties in coordinating calculation load and simulation accuracy.For FRM,the fragment replacement mode and particle breakage criteria are critical.The number and size of replacement particles are difficult to match with actual conditions,and ensuring mass conservation is significantly challenging.Although the initial computational load in FRM is relatively low,it increases significantly as the simulation progresses.To address these issues,we propose a simulation method that integrates BPM and FRM,allowing sub-particle breakage in BPM to be realized by FRM.展开更多
The topic of ground movements in Germany has been studied extensively in the past,especially in the field of active mines.The active hard coal mines in Germany were finally shut down in 2018 and lignite mining is expe...The topic of ground movements in Germany has been studied extensively in the past,especially in the field of active mines.The active hard coal mines in Germany were finally shut down in 2018 and lignite mining is expected to take place only until 2038.The so-called long-term liabilities of the mine operators in Germany include,among other things,the long-term guarantee of stability and thus the monitoring of ground motion.So far,the economic use of underground mining in Germany was mainly the supply of raw materials.In the future,the underground storage of compressed air,methane or hydrogen will play an important role in renewable energy supply and climate change.Therefore,the underground storage space will become more important and the spatial planning is essential to ensure availability of safe underground openings for the various options of environmentally friendly energy storage.However,this renewed usage of underground openings may also bring new and sometimes unknown challenges of geomechanical influence.The aftermath of hard coal and lignite mining will be an increasing challenge in mining subsidence engineering.On the other hand,new possibilities due to underground spatial planning may lead to subsidence and/or heaving of the upper surface.展开更多
A new approach for prediction of face advance rete (FAR) prior to mining operation and determination of the operation efficiency after mining operation in retreat longwall mining panel is presented based upon the conc...A new approach for prediction of face advance rete (FAR) prior to mining operation and determination of the operation efficiency after mining operation in retreat longwall mining panel is presented based upon the concepts of rock engineering system (RES). For this purpose, six longwall panels considered in Parvadeh-I coal mine. Seven major effective parameters on FAR was selected including coal mine roof rating, gas propagation, safety factor of longwall face, ratio of joint spacing to cutting depth at longwall face, longwall face inclination, panel width, floor rock mass rating. To performance evaluation of the presented model, the relationship between the average vulnerability indexes of advance operation with FAR was determined in considered panels with coefficient of determination (R2) equal to 0.884 that indicate relatively acceptable correlation and compatibility. Investigations of the research indicated that it is possible to determine the actual operation efficiency under fair conditions by a RES-based model. The inevitable reduction of FAR for each longwall panel was determined by presented model that the difference amount between the maximum possible practical face advance rate (FARmpp) and recorded actual face advance rate (FARa) indicate the operation efficiency. Applied approach in this paper can be used to prediction of FAR in retreat longwall mining panel for same conditions that can have many benefits, including better and more accurate planning for the sales market and mine operation. Also, presented method in this paper can be applied as a useful tool to determination of actual operation efficiency for other sections and extraction methods in coal mines.展开更多
In order to improve rib stability,failure criteria and instability mode of a thick coal seam with inter-band rock layer are analysed in this study.A three-dimensional mechanical model is established for the rib by con...In order to improve rib stability,failure criteria and instability mode of a thick coal seam with inter-band rock layer are analysed in this study.A three-dimensional mechanical model is established for the rib by considering the rock layer.A safety factor is defined foy the rib,and it is observed that the safety factor exhibits a positive correlation with the thickness and strength of the inter-band rock.A calculation method for determining critical parameters of the rock layer is presented to ensure the rib stability.It is revealed that incomplete propagation of the fracture at the hard rock constitutes a fundamental prerequisite for ensuring the rib stability.The influence of the position of the inter-band rock in the coal seam on failure mechanism of the rib was thoroughly investigated by developing a series of physical models for the rib at the face area.The best position for the inter-band rock in the coal seam is at a height of 1.5 m away from the roof line,which tends to provide a good stability state for the rib.For different inter-band rock positions,two ways of controlling rib by increasing supports stiffness and flexible grouting reinforcement are proposed.展开更多
The 2D limit equilibrium method is widely used for slope stability analysis.However,with the advancement of dump engineering,composite slopes often exhibit significant 3D mechanical effects.Consequently,it is of signi...The 2D limit equilibrium method is widely used for slope stability analysis.However,with the advancement of dump engineering,composite slopes often exhibit significant 3D mechanical effects.Consequently,it is of significant importance to develop an effective 3D stability calculation method for composite slopes to enhance the design and stability control of open-pit slope engineering.Using the composite slope formed by the mining stope and inner dump in Baiyinhua No.1 and No.2 open-pit coal mine as a case study,this research investigates the failure mode of composite slopes and establishes spatial shape equations for the sliding mass.By integrating the shear resistance and sliding force of each row of microstrip columns onto the bottom surface of the strip corresponding to the main sliding surface,a novel 2D equivalent physical and mechanical parameters analysis method for the strips on the main sliding surface of 3D sliding masses is proposed.Subsequently,a comprehensive 3D stability calculation method for composite slopes is developed,and the quantitative relationship between the coordinated development distance and its 3D stability coefficients is examined.The analysis reveals that the failure mode of the composite slope is characterized by cutting-bedding sliding,with the arc serving as the side interface and the weak layer as the bottom interface,while the destabilization mechanism primarily involves shear failure.The spatial form equation of the sliding mass comprises an ellipsoid and weak plane equation.The analysis revealed that when the coordinated development distance is 1500 m,the error rate between the 3D stability calculation result and the 2D stability calculation result of the composite slope is less than 8%,thereby verifying the proposed analytical method of equivalent physical and mechanical parameters and the 3D stability calculation method for composite slopes.Furthermore,the3D stability coefficient of the composite slope exhibits an exponential correlation with the coordinated development distance,with the coefficient gradually decreasing as the coordinated development distance increases.These findings provide a theoretical guideline for designing similar slope shape parameters and conducting stability analysis.展开更多
The residual subsidence caused by underground mining in mountain area has a long subsidence duration time and great potential harm,which seriously threatens the safety of people's production and life in the mining...The residual subsidence caused by underground mining in mountain area has a long subsidence duration time and great potential harm,which seriously threatens the safety of people's production and life in the mining area.Therefore,it is necessary to use appropriate monitoring methods and mathematical models to effectively monitor and predict the residual subsidence caused by underground mining.Compared with traditional level survey and InSAR(Interferometric Synthetic Aperture Radar)technology,GNSS(Global Navigation Satellite System)online monitoring technology has the advantages of long-term monitoring,high precision and more flexible monitoring methods.The empirical equation method of residual subsidence in mining subsidence is effectively combined with the rock creep equation,which can not only describe the residual subsidence process from the mechanism,but also predict the residual subsidence.Therefore,based on GNSS online monitoring technology,combined with the mining subsidence model of mountain area and adding the correlation coefficient of the compaction degree of caving broken rock and the Kelvin model of rock mechanics,this paper constructs the residual subsidence time series model of arbitrary point on the ground in mountain area.Through the example,the predicted results of the model in the inversion parameter phase and the dynamic prediction phase are compared with the measured data sequence.The results show that the model can carry out effective numerical calculation according to the GNSS monitoring data of any point on the ground,and the model prediction effect is good,which provides a new method for the prediction of residual subsidence in mountain mining.展开更多
The crack initiation stress threshold is widely used in excavation industries as rock spalling strength when designing deep underground structures to avoid unwanted brittle failures.While various strain-based methods ...The crack initiation stress threshold is widely used in excavation industries as rock spalling strength when designing deep underground structures to avoid unwanted brittle failures.While various strain-based methods have been developed for the estimation of this critical design parameter,such methods are destructive and often requires subjective interpretations of the stress–strain curves,particularly in rocks with pre-existing microcracks or high porosity.This study explore the applicability of non-destructive ultrasonic through-transmission methods for determining rock damage levels by assessing the changes in transmitted signal characteristics during loading.The change in velocity,amplitude,dominant frequency,and root-mean-square voltage are investigated with four different rock types including marble,sandstone,granite,and basalt under various stress levels.Results suggest the rate of signal variations can be reliably used to estimate crack closure and crack initiation stress levels across the tested rocks before failure.Comparison of the results between the conventional techniques and the new proposed methods based on ultrasonic monitoring are further discussed.展开更多
The sublevel top coal caving(SLTCC)mining technology is extensively employed in steeply inclined thick coal seams.Because of the typical characteristics of the short coal face in this mining method,a signifi-cant port...The sublevel top coal caving(SLTCC)mining technology is extensively employed in steeply inclined thick coal seams.Because of the typical characteristics of the short coal face in this mining method,a signifi-cant portion of the top coal is lost at the face end.For reducing the coal loss,the partially reverse drawing technique(PRDT)is proposed as a novel top coal drawing technique.Meanwhile,based on the Bergmark-Roos model(B-R model),a theoretical method for calculating the recovery ratio of top coal based on the top coal boundary equation and residual top coal amount is proposed.The mechanism of PRDT to reduce top coal loss at the face end is revealed by comparing with single-round sequential drawing technique(SSDT).Physical experiments and in-site observation data were used to verify the theoretical model.The results show that PRDT can effectively reduce the amount of residual coal near the roof by optimizing the shape characteristics of top coal boundary.Suggestions for improve recovery ratio in Wudong Coal Mine were given based on its face parameters.展开更多
Background Traditional methods for monitoring mining equipment rely primarily on visual inspections,which are time-consuming,inefficient,and hazardous.This article introduces a novel approach to monitoring mission-cri...Background Traditional methods for monitoring mining equipment rely primarily on visual inspections,which are time-consuming,inefficient,and hazardous.This article introduces a novel approach to monitoring mission-critical systems and services in the mining industry by integrating virtual reality(VR)and digital twin(DT)technologies.VR-based DTs enable remote equipment monitoring,advanced analysis of machine health,enhanced visualization,and improved decision making.Methods This article presents an architecture for VR-based DT development,including the developmental stages,activities,and stakeholders involved.A case study on the condition monitoring of a conveyor belt using real-time synthetic vibration sensor data was conducted using the proposed methodology.The study demonstrated the application of the methodology in remote monitoring and identified the need for further development for implementation in active mining operations.The article also discusses interdisciplinarity,choice of tools,computational resources,time and cost,human involvement,user acceptance,frequency of inspection,multiuser environment,potential risks,and applications beyond the mining industry.Results The findings of this study provide a foundation for future research in the domain of VR-based DTs for remote equipment monitoring and a novel application area for VR in mining.展开更多
Salt caverns are extensively utilized for storing various substances such as fossil energy,hydrogen,compressed air,nuclear waste,and industrial solid waste.In China,when the salt cavern is leached through single-well ...Salt caverns are extensively utilized for storing various substances such as fossil energy,hydrogen,compressed air,nuclear waste,and industrial solid waste.In China,when the salt cavern is leached through single-well water solution mining with oil as a cushion,engineering challenges arise with the leaching tubing,leading to issues like damage and instability.These problems significantly hinder the progress of cavern construction and the control of cavern shape.The primary cause of this is the flowinduced vibration instability of leaching tubing within a confined space,which results in severe bending or damage to the tubing.This study presents a model experimental investigation on the dynamic characteristics of leaching tubing using a self-developed liquid-solid coupling physical model experiment apparatus.The experiment utilizes a silicone-rubber pipe(SRP)and a polycarbonate pipe(PCP)to examine the effects of various factors on the dynamic stability of cantilevered pipes conveying fluid.These factors include external space constraint,flexural rigidity,medium outside the pipe,overhanging length,and end conditions.The experiments reveal four dynamic response phenomena:water hammer,static buckling,chaotic motion,and flutter instability.The study further demonstrates that the length of the external space constraint has a direct impact on the flutter critical flow velocity of the cantilevered pipe conveying fluid.Additionally,the flutter critical flow velocity is influenced by the end conditions and different external media.展开更多
This study was focused to assess major and trace elements in bauxitic duricrusts from Ngaoundal and its surroundings in order to establish their mining interest. To this end, fieldworks, mineralogical and geochemical ...This study was focused to assess major and trace elements in bauxitic duricrusts from Ngaoundal and its surroundings in order to establish their mining interest. To this end, fieldworks, mineralogical and geochemical analyses were carried out. Four facies of duricrust were identified and characterized from the summit to the top of the slope of the Ngaoundal mountain: scoriaceous, pisolitic, nodular and massive. Mineralogical and geochemical analyses performed on 16 samples, revealed a significant concentration of Al<sub>2</sub>O<sub>3</sub> mainly in the scoriaceous facies (over 45% in grade), moderate in Fe<sub>2</sub>O<sub>3</sub> (averaging 23.69%) and SiO<sub>2</sub> (averaging 21.7%). Trace elements were generally low, excluding Cr (421 ppm on average), Zr (327 ppm on average and V (213 ppm on average). In addition, the limited quantities of alkalis (Na<sub>2</sub>O, K<sub>2</sub>O) and alkaline earths metals (MgO, CaO) coupled with the very high values of Chemical Index of Alteration (CIA) and Mineralogical Index of Alteration (MIA), (more than 99%) attest to the intense weathering of the studied materials. Allitization and monosiallitization constituted the crystallochemical phenomena that have led to the development of bauxitic minerals. More than 90% of gibbsite in scoriaceous facies, 52.21% - 76.01% of kaolinite in pisolitic facies and more than 40% of hematite in nodular facies were quantified. The relationships between the constitutive components indicated their interdependency during the bauxitization phenomenon. The mineralogical and geochemical properties highlighted the mining interest of the studied duricrusts to be valorized.展开更多
Surface mining operations play a crucial role in meeting the world’s increasing demand for mineral resources for the advancement of technology and debauched expansion of economies. The search for and exploitation of ...Surface mining operations play a crucial role in meeting the world’s increasing demand for mineral resources for the advancement of technology and debauched expansion of economies. The search for and exploitation of these mineral resources are therefore important for the sustainability of the mineral extraction industry. To this end, efficient mine planning must incorporate sterilisation drilling and effective waste rock management principles in the search and exploitation of these minerals. In this article, sterilisation drilling is being reviewed vis-a-vis the establishment of waste and tailings dump locations, backfilling of open pit excavations and mine closure giving critical attention to the minerals and mining laws of Ghana. Subsequently, a detailed case study of a surface mining operation that successfully incorporated sterilisation drilling in determining waste dump location in its mine planning process has been presented in this study. The findings indicate that the proposed waste dump location could present a potential mining prospect in the future based on enhanced milling capacity/technology and improved mineral commodity price;underscoring the significance of sterilization drilling in the sustainability of the mining industry.展开更多
Oxidized and acidic mining discharges(pH between 4 and 5)from the Perkoa zinc mine in Burkina Faso consisting of waste rock,crusher rejects and mining tailings were sampled and used for neutralization tests with calca...Oxidized and acidic mining discharges(pH between 4 and 5)from the Perkoa zinc mine in Burkina Faso consisting of waste rock,crusher rejects and mining tailings were sampled and used for neutralization tests with calcareous dolomite(for six months).The mining discharges and the calcareous dolomite were previously characterized.Columns of 60 cm length and 15 cm diameter were used for the tests.Then,2.62 kg of calcareous dolomite was deposited on the mining discharges in each column.Two liters of deionized water are added every 15 days to each column.Samples were taken at the outlet of the columns at time intervals and then analyzed to assess the evolution of pH,electrical conductivity and contents of PHEs(Potentially Harmful Elements)over time.Following the neutralization tests on solid mining discharges,neutralization tests were also carried out on acid leachates resulting from the oxidation of these same solid mining discharges with calcareous dolomite.The results show that calcareous dolomite is very effective for the neutralization of SR(Sterile Discharges)and the precipitation of PHEs contained therein.It is also effective in buffering acidic effluents from these sterile discharges.As for other mining discharges(crusher rejects and mining residues),although calcareous dolomite is not effective in neutralizing these oxidized and acidic solid discharges,it is however effective in precipitating PHEs such as arsenic and lead.Calcareous dolomite is also effective in buffering acid leachates from these oxidized and acidic mining discharges(crusher rejects and mining tailings).展开更多
Calcium ferrite(CF)is recognized as a potential green and efficient functional material because of its advantages of magnetism,electrochemistry,catalysis,and biocompatibility in the fields of materials chemistry,envir...Calcium ferrite(CF)is recognized as a potential green and efficient functional material because of its advantages of magnetism,electrochemistry,catalysis,and biocompatibility in the fields of materials chemistry,environmental engineering,and biomedicine.There-fore,the obtained research results need to be systematically summarized,and new perspectives on CF and its composite materials need to be analyzed.Based on the presented studies of CF and its composite materials,the types and structures of the crystal are summarized.In addition,the current application technologies and theoretical mechanisms with various properties in different fields are elucidated.Moreover,the various preparation methods of CF and its composite materials are elaborated in detail.Most importantly,the advantages and disadvantages of the synthesis methods of CF and its composite materials are discussed,and the existing problems and emerging challenges in practical production are identified.Furthermore,the key future research directions of CF and its composite materials have been prospected from the potential application technologies to provide references for its synthesis and efficient utilization.展开更多
Domaining is a crucial process in geostatistics, particularly when significant spatial variations are observed within a site, as these variations can significantly affect the outcomes of spatial modeling. This study i...Domaining is a crucial process in geostatistics, particularly when significant spatial variations are observed within a site, as these variations can significantly affect the outcomes of spatial modeling. This study investigates the application of hard and fuzzy clustering algorithms for domain delineation, using geological and geochemical data from two exploration campaigns at the eastern Kahang deposit in central Iran. The dataset includes geological layers (lithology, alteration, and mineral zones), geochemical layers (Cu, Mo, Ag, and Au grades), and borehole coordinates. Six clustering algorithms—K-means, hierarchical, affinity propagation, self-organizing map (SOM), fuzzy C-means, and Gustafson-Kessel—were applied to determine the optimal number of clusters, which ranged from 3 to 4. The fuzziness and weighting parameters were found to range from 1.1 to 1.3 and 0.1 to 0.3, respectively, based on the evaluation of various hard and fuzzy cluster validity indices. Directional variograms were computed to assess spatial anisotropy, and the anisotropy ellipsoid for each domain was defined to identify the model with the highest level of anisotropic discrimination among the domains. The SOM algorithm, which incorporated both qualitative and quantitative data, produced the best model, resulting in the identification of three distinct domains. These findings underscore the effectiveness of combining clustering techniques with variogram analysis for accurate domain delineation in geostatistical modeling.展开更多
This work aimed to(i)understand conventional and pulse gas tungsten arc welding(GTAW)of AZ31B,and(ii)explore high frequency welding(100 Hz-1500 Hz).GTA welding with alternating current(AC)and direct current electrode ...This work aimed to(i)understand conventional and pulse gas tungsten arc welding(GTAW)of AZ31B,and(ii)explore high frequency welding(100 Hz-1500 Hz).GTA welding with alternating current(AC)and direct current electrode positive(DCEP)polarities yielded crack-free partial penetration welds for6 mm thick AZ31B alloy sheet.Welding under direct current electrode negative(DCEN)polarity with identical parameters as that for AC and DCEP resulted in full penetration welds that had microcracks.Defect-free full-penetration welds could be accomplished with pulse GTA welding using DCEN polarity at a pulse frequency of 1 Hz with a pulse duration ratio of 1:1.The resultant DCEN P 1:1 weld metal had a microstructure finer than the conventional DCEN weld.Welds produced with pulse duration ratios of 1:2and 1:4 lacked penetration but had a much finer microstructures because of the lower heat input.The arc constriction by the high frequency pulsing in the Activ Arc■-High frequency(AA-HF)mode welding was responsible for deeper penetration.Welds produced under DCEN pulsing and AA-HF conditions had hardness higher than conventional DCEN,DCEP and AC GTA welds,attributed to the finer microstructure.AA-HF GTA welding produced defect free deeper penetration welds with good microstructural features/mechanical properties and also gave an advantage of 50%enhanced productivity when welded at1500 Hz.展开更多
This paper attempts to quantify the effect of backfilling on pillar strength in highwall mining using numerical modelling. Calibration against the new empirical strength formula for highwall mining was conducted to ob...This paper attempts to quantify the effect of backfilling on pillar strength in highwall mining using numerical modelling. Calibration against the new empirical strength formula for highwall mining was conducted to obtain the material parameters used in the numerical modelling. With the obtained coal strength parameters, three sets of backfill properties were investigated. The results reveal that the behavior of pillars varies with the type and amount of backfill as well as the pillar width to mining height ratio(w/h). In case of cohesive backfill, generally 75% backfill shows a significant increase in peak strength, and the increase in peak strength is more pronounced for the pillars having lower w/h ratios. In case of noncohesive backfill, the changes in both the peak and residual strengths with up to 92% backfill are negligible while the residual strength constantly increases after reaching the peak strength only when 100%backfill is placed. Based on the modelling results, different backfilling strategies should be considered on a case by case basis depending on the type of backfill available and desired pillar dimension.展开更多
With the depletion of easily minable coal seams,less favorable reserves under adverse conditions have to be mined out to meet the market demand.Due to some historical reasons,large amount of remnant coal was left unre...With the depletion of easily minable coal seams,less favorable reserves under adverse conditions have to be mined out to meet the market demand.Due to some historical reasons,large amount of remnant coal was left unrecovered.One such case history occurred with the remnant rectangular stripe coal pillars using partial extraction method at Guandi Mine,Shanxi Province,China.The challenge that the coal mine was facing was that there is an ultra-close coal seam right under it with an only 0.8–1.5 m sandstone dirt band in between.The simulation study was carried out to investigate the simultaneous recovery of upper remnant coal pillars while mining the ultra-close lower panel using longwall top coal caving(LTCC).The remnant coal pillar was induced to cave in as top coal in LTCC system.Physical modelling shows that the coal pillars are the abutments of the stress arch structure formed within the overburden strata.The stability of overhanging roof strata highly depends on the stability of the remnant coal pillars.And the gob development(roof strata cave-in)is intermittent with the cave-in of these coal pillars and the sandstone dirt band.FLAC3D numerical modelling shows that the multi-seam interaction has a significant influence on mining-induced stress environment for mining of lower panels.The pattern of the stress evolution on the coal pillars with the advance of the lower working face was found.It is demonstrated that the stress relief of a remnant coal pillar enhances the caveability of the pillars and sandstone dirt band below.展开更多
In the Kaiping Coal field,mining of five coal seams,located within 80 m in the Kailuan Group,#5,#7,#8,#9 and#12 coal seam,is difficult due to small interburden thickness,concentrated stress distributions,high coal sea...In the Kaiping Coal field,mining of five coal seams,located within 80 m in the Kailuan Group,#5,#7,#8,#9 and#12 coal seam,is difficult due to small interburden thickness,concentrated stress distributions,high coal seam metamorphism,and complex geological conditions.By using the ZTR12 geological penetration radar(GPR)survey combined with borehole observations,the overburden caving due to mining of the five coals seams was measured.The development characteristics of full-cover rock fractures after mining were obtained from the GPR scan,which provides a measurement basis for the control of rock strata in close multiple coal seam mining.For the first time,it was found that the overburden caving pattern shows a periodic triangular caved characteristic.Furthermore,it is proposed that an upright triangular collapsed pile masonry and an inverted triangular with larger fragments piled up alternately appear in the lower gob.The research results show that the roof structure formed in the gob area can support the key overlying strata,which is beneficial to ensure the integrity and stability of the upper coal seams in multiple-seam mining of close coal seams.展开更多
基金financially supported by the National Natural Science Foundation of China (No.52104155)the China Postdoctoral Science Foundation (No.2023M733778)the Fundamental Research Funds for the Central Universities,China (No.2024ZKPYNY01)。
文摘Discrete element method(DEM)-based simulations are crucial for bridging macro and micro research,particularly owing to the limitations of experimental methods.This paper reviews the simulation techniques used for particle breakage in DEM,summarizes the research status,and discusses pertinent issues to outline future prospects for particle breakage simulation.Fragment replacement method(FRM)and bonded particle method(BPM)are widely used to simulate particle breakage based on DEM.In BPM models,sub-particle size selection,particle cluster generation mode,and bonding parameters are crucial considerations.Although BPM can simulate the breakage of particles with complex shapes,it cannot re-simulate them,posing difficulties in coordinating calculation load and simulation accuracy.For FRM,the fragment replacement mode and particle breakage criteria are critical.The number and size of replacement particles are difficult to match with actual conditions,and ensuring mass conservation is significantly challenging.Although the initial computational load in FRM is relatively low,it increases significantly as the simulation progresses.To address these issues,we propose a simulation method that integrates BPM and FRM,allowing sub-particle breakage in BPM to be realized by FRM.
文摘The topic of ground movements in Germany has been studied extensively in the past,especially in the field of active mines.The active hard coal mines in Germany were finally shut down in 2018 and lignite mining is expected to take place only until 2038.The so-called long-term liabilities of the mine operators in Germany include,among other things,the long-term guarantee of stability and thus the monitoring of ground motion.So far,the economic use of underground mining in Germany was mainly the supply of raw materials.In the future,the underground storage of compressed air,methane or hydrogen will play an important role in renewable energy supply and climate change.Therefore,the underground storage space will become more important and the spatial planning is essential to ensure availability of safe underground openings for the various options of environmentally friendly energy storage.However,this renewed usage of underground openings may also bring new and sometimes unknown challenges of geomechanical influence.The aftermath of hard coal and lignite mining will be an increasing challenge in mining subsidence engineering.On the other hand,new possibilities due to underground spatial planning may lead to subsidence and/or heaving of the upper surface.
文摘A new approach for prediction of face advance rete (FAR) prior to mining operation and determination of the operation efficiency after mining operation in retreat longwall mining panel is presented based upon the concepts of rock engineering system (RES). For this purpose, six longwall panels considered in Parvadeh-I coal mine. Seven major effective parameters on FAR was selected including coal mine roof rating, gas propagation, safety factor of longwall face, ratio of joint spacing to cutting depth at longwall face, longwall face inclination, panel width, floor rock mass rating. To performance evaluation of the presented model, the relationship between the average vulnerability indexes of advance operation with FAR was determined in considered panels with coefficient of determination (R2) equal to 0.884 that indicate relatively acceptable correlation and compatibility. Investigations of the research indicated that it is possible to determine the actual operation efficiency under fair conditions by a RES-based model. The inevitable reduction of FAR for each longwall panel was determined by presented model that the difference amount between the maximum possible practical face advance rate (FARmpp) and recorded actual face advance rate (FARa) indicate the operation efficiency. Applied approach in this paper can be used to prediction of FAR in retreat longwall mining panel for same conditions that can have many benefits, including better and more accurate planning for the sales market and mine operation. Also, presented method in this paper can be applied as a useful tool to determination of actual operation efficiency for other sections and extraction methods in coal mines.
基金financial support from the National Key Research and Development Program of China (No.2023YFC2907501)the National Natural Science Foundation of China (No.52374106)the Fundamental Research Funds for the Central Universities (No.2023ZKPYNY01)。
文摘In order to improve rib stability,failure criteria and instability mode of a thick coal seam with inter-band rock layer are analysed in this study.A three-dimensional mechanical model is established for the rib by considering the rock layer.A safety factor is defined foy the rib,and it is observed that the safety factor exhibits a positive correlation with the thickness and strength of the inter-band rock.A calculation method for determining critical parameters of the rock layer is presented to ensure the rib stability.It is revealed that incomplete propagation of the fracture at the hard rock constitutes a fundamental prerequisite for ensuring the rib stability.The influence of the position of the inter-band rock in the coal seam on failure mechanism of the rib was thoroughly investigated by developing a series of physical models for the rib at the face area.The best position for the inter-band rock in the coal seam is at a height of 1.5 m away from the roof line,which tends to provide a good stability state for the rib.For different inter-band rock positions,two ways of controlling rib by increasing supports stiffness and flexible grouting reinforcement are proposed.
基金supported by the National Natural Science Foundation of China (No.52374124)National Youth Science Foundation of China (No.52204135)+3 种基金Xing Liao Talent Plan (No.XLYC2202004)Young Elite Scientists Sponsorship Program by CAST (No.2023QNRC001)Liaoning Province International Science and Technology Cooperation Plan (No.2022JH2/1070004)Liaoning Natural Science Foundation Program (No.2022-BS-327)。
文摘The 2D limit equilibrium method is widely used for slope stability analysis.However,with the advancement of dump engineering,composite slopes often exhibit significant 3D mechanical effects.Consequently,it is of significant importance to develop an effective 3D stability calculation method for composite slopes to enhance the design and stability control of open-pit slope engineering.Using the composite slope formed by the mining stope and inner dump in Baiyinhua No.1 and No.2 open-pit coal mine as a case study,this research investigates the failure mode of composite slopes and establishes spatial shape equations for the sliding mass.By integrating the shear resistance and sliding force of each row of microstrip columns onto the bottom surface of the strip corresponding to the main sliding surface,a novel 2D equivalent physical and mechanical parameters analysis method for the strips on the main sliding surface of 3D sliding masses is proposed.Subsequently,a comprehensive 3D stability calculation method for composite slopes is developed,and the quantitative relationship between the coordinated development distance and its 3D stability coefficients is examined.The analysis reveals that the failure mode of the composite slope is characterized by cutting-bedding sliding,with the arc serving as the side interface and the weak layer as the bottom interface,while the destabilization mechanism primarily involves shear failure.The spatial form equation of the sliding mass comprises an ellipsoid and weak plane equation.The analysis revealed that when the coordinated development distance is 1500 m,the error rate between the 3D stability calculation result and the 2D stability calculation result of the composite slope is less than 8%,thereby verifying the proposed analytical method of equivalent physical and mechanical parameters and the 3D stability calculation method for composite slopes.Furthermore,the3D stability coefficient of the composite slope exhibits an exponential correlation with the coordinated development distance,with the coefficient gradually decreasing as the coordinated development distance increases.These findings provide a theoretical guideline for designing similar slope shape parameters and conducting stability analysis.
基金supported by the Natural Science Foundation of Shanxi Province,China(202203021211153)National Natural Science Foundation of China(51704205).
文摘The residual subsidence caused by underground mining in mountain area has a long subsidence duration time and great potential harm,which seriously threatens the safety of people's production and life in the mining area.Therefore,it is necessary to use appropriate monitoring methods and mathematical models to effectively monitor and predict the residual subsidence caused by underground mining.Compared with traditional level survey and InSAR(Interferometric Synthetic Aperture Radar)technology,GNSS(Global Navigation Satellite System)online monitoring technology has the advantages of long-term monitoring,high precision and more flexible monitoring methods.The empirical equation method of residual subsidence in mining subsidence is effectively combined with the rock creep equation,which can not only describe the residual subsidence process from the mechanism,but also predict the residual subsidence.Therefore,based on GNSS online monitoring technology,combined with the mining subsidence model of mountain area and adding the correlation coefficient of the compaction degree of caving broken rock and the Kelvin model of rock mechanics,this paper constructs the residual subsidence time series model of arbitrary point on the ground in mountain area.Through the example,the predicted results of the model in the inversion parameter phase and the dynamic prediction phase are compared with the measured data sequence.The results show that the model can carry out effective numerical calculation according to the GNSS monitoring data of any point on the ground,and the model prediction effect is good,which provides a new method for the prediction of residual subsidence in mountain mining.
基金support from the Australian Research Council(ARC)through Discovery Project DP210102224.
文摘The crack initiation stress threshold is widely used in excavation industries as rock spalling strength when designing deep underground structures to avoid unwanted brittle failures.While various strain-based methods have been developed for the estimation of this critical design parameter,such methods are destructive and often requires subjective interpretations of the stress–strain curves,particularly in rocks with pre-existing microcracks or high porosity.This study explore the applicability of non-destructive ultrasonic through-transmission methods for determining rock damage levels by assessing the changes in transmitted signal characteristics during loading.The change in velocity,amplitude,dominant frequency,and root-mean-square voltage are investigated with four different rock types including marble,sandstone,granite,and basalt under various stress levels.Results suggest the rate of signal variations can be reliably used to estimate crack closure and crack initiation stress levels across the tested rocks before failure.Comparison of the results between the conventional techniques and the new proposed methods based on ultrasonic monitoring are further discussed.
基金supported by the Beijing Natural Science Foundation(No.2232059)the National Natural Science Foundation of China(Nos.52121003,52374148,52204163 and 51934008)+1 种基金the Fundamental Research Funds for the Central Universities(Nos.2023JCCXNY04 and 2023YQTD02)the Open Fund of Key laboratory of Xinjiang Coal Resources Green Mining,Ministry of Education(No.KLXGY-KB2408)。
文摘The sublevel top coal caving(SLTCC)mining technology is extensively employed in steeply inclined thick coal seams.Because of the typical characteristics of the short coal face in this mining method,a signifi-cant portion of the top coal is lost at the face end.For reducing the coal loss,the partially reverse drawing technique(PRDT)is proposed as a novel top coal drawing technique.Meanwhile,based on the Bergmark-Roos model(B-R model),a theoretical method for calculating the recovery ratio of top coal based on the top coal boundary equation and residual top coal amount is proposed.The mechanism of PRDT to reduce top coal loss at the face end is revealed by comparing with single-round sequential drawing technique(SSDT).Physical experiments and in-site observation data were used to verify the theoretical model.The results show that PRDT can effectively reduce the amount of residual coal near the roof by optimizing the shape characteristics of top coal boundary.Suggestions for improve recovery ratio in Wudong Coal Mine were given based on its face parameters.
基金the Natural Sciences and Engineering Research Council of Canada(NSERC)under GR012389.
文摘Background Traditional methods for monitoring mining equipment rely primarily on visual inspections,which are time-consuming,inefficient,and hazardous.This article introduces a novel approach to monitoring mission-critical systems and services in the mining industry by integrating virtual reality(VR)and digital twin(DT)technologies.VR-based DTs enable remote equipment monitoring,advanced analysis of machine health,enhanced visualization,and improved decision making.Methods This article presents an architecture for VR-based DT development,including the developmental stages,activities,and stakeholders involved.A case study on the condition monitoring of a conveyor belt using real-time synthetic vibration sensor data was conducted using the proposed methodology.The study demonstrated the application of the methodology in remote monitoring and identified the need for further development for implementation in active mining operations.The article also discusses interdisciplinarity,choice of tools,computational resources,time and cost,human involvement,user acceptance,frequency of inspection,multiuser environment,potential risks,and applications beyond the mining industry.Results The findings of this study provide a foundation for future research in the domain of VR-based DTs for remote equipment monitoring and a novel application area for VR in mining.
基金financial support received from the Open Research Fund of the State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences (Grant No.Z019011)the Shandong Provincial Natural Science Foundation (Grant No.ZR2020QE112)+1 种基金the National Natural Science Foundation of China (No.51874273)the Excellent Young Scientists Fund Program of National Natural Science Foundation of China (No.52122403)。
文摘Salt caverns are extensively utilized for storing various substances such as fossil energy,hydrogen,compressed air,nuclear waste,and industrial solid waste.In China,when the salt cavern is leached through single-well water solution mining with oil as a cushion,engineering challenges arise with the leaching tubing,leading to issues like damage and instability.These problems significantly hinder the progress of cavern construction and the control of cavern shape.The primary cause of this is the flowinduced vibration instability of leaching tubing within a confined space,which results in severe bending or damage to the tubing.This study presents a model experimental investigation on the dynamic characteristics of leaching tubing using a self-developed liquid-solid coupling physical model experiment apparatus.The experiment utilizes a silicone-rubber pipe(SRP)and a polycarbonate pipe(PCP)to examine the effects of various factors on the dynamic stability of cantilevered pipes conveying fluid.These factors include external space constraint,flexural rigidity,medium outside the pipe,overhanging length,and end conditions.The experiments reveal four dynamic response phenomena:water hammer,static buckling,chaotic motion,and flutter instability.The study further demonstrates that the length of the external space constraint has a direct impact on the flutter critical flow velocity of the cantilevered pipe conveying fluid.Additionally,the flutter critical flow velocity is influenced by the end conditions and different external media.
文摘This study was focused to assess major and trace elements in bauxitic duricrusts from Ngaoundal and its surroundings in order to establish their mining interest. To this end, fieldworks, mineralogical and geochemical analyses were carried out. Four facies of duricrust were identified and characterized from the summit to the top of the slope of the Ngaoundal mountain: scoriaceous, pisolitic, nodular and massive. Mineralogical and geochemical analyses performed on 16 samples, revealed a significant concentration of Al<sub>2</sub>O<sub>3</sub> mainly in the scoriaceous facies (over 45% in grade), moderate in Fe<sub>2</sub>O<sub>3</sub> (averaging 23.69%) and SiO<sub>2</sub> (averaging 21.7%). Trace elements were generally low, excluding Cr (421 ppm on average), Zr (327 ppm on average and V (213 ppm on average). In addition, the limited quantities of alkalis (Na<sub>2</sub>O, K<sub>2</sub>O) and alkaline earths metals (MgO, CaO) coupled with the very high values of Chemical Index of Alteration (CIA) and Mineralogical Index of Alteration (MIA), (more than 99%) attest to the intense weathering of the studied materials. Allitization and monosiallitization constituted the crystallochemical phenomena that have led to the development of bauxitic minerals. More than 90% of gibbsite in scoriaceous facies, 52.21% - 76.01% of kaolinite in pisolitic facies and more than 40% of hematite in nodular facies were quantified. The relationships between the constitutive components indicated their interdependency during the bauxitization phenomenon. The mineralogical and geochemical properties highlighted the mining interest of the studied duricrusts to be valorized.
文摘Surface mining operations play a crucial role in meeting the world’s increasing demand for mineral resources for the advancement of technology and debauched expansion of economies. The search for and exploitation of these mineral resources are therefore important for the sustainability of the mineral extraction industry. To this end, efficient mine planning must incorporate sterilisation drilling and effective waste rock management principles in the search and exploitation of these minerals. In this article, sterilisation drilling is being reviewed vis-a-vis the establishment of waste and tailings dump locations, backfilling of open pit excavations and mine closure giving critical attention to the minerals and mining laws of Ghana. Subsequently, a detailed case study of a surface mining operation that successfully incorporated sterilisation drilling in determining waste dump location in its mine planning process has been presented in this study. The findings indicate that the proposed waste dump location could present a potential mining prospect in the future based on enhanced milling capacity/technology and improved mineral commodity price;underscoring the significance of sterilization drilling in the sustainability of the mining industry.
文摘Oxidized and acidic mining discharges(pH between 4 and 5)from the Perkoa zinc mine in Burkina Faso consisting of waste rock,crusher rejects and mining tailings were sampled and used for neutralization tests with calcareous dolomite(for six months).The mining discharges and the calcareous dolomite were previously characterized.Columns of 60 cm length and 15 cm diameter were used for the tests.Then,2.62 kg of calcareous dolomite was deposited on the mining discharges in each column.Two liters of deionized water are added every 15 days to each column.Samples were taken at the outlet of the columns at time intervals and then analyzed to assess the evolution of pH,electrical conductivity and contents of PHEs(Potentially Harmful Elements)over time.Following the neutralization tests on solid mining discharges,neutralization tests were also carried out on acid leachates resulting from the oxidation of these same solid mining discharges with calcareous dolomite.The results show that calcareous dolomite is very effective for the neutralization of SR(Sterile Discharges)and the precipitation of PHEs contained therein.It is also effective in buffering acidic effluents from these sterile discharges.As for other mining discharges(crusher rejects and mining residues),although calcareous dolomite is not effective in neutralizing these oxidized and acidic solid discharges,it is however effective in precipitating PHEs such as arsenic and lead.Calcareous dolomite is also effective in buffering acid leachates from these oxidized and acidic mining discharges(crusher rejects and mining tailings).
基金supported by the National Natural Science Foundation of China(No.51574105)the Science and Technology Program of Hebei Province,China(No.23564101D)+2 种基金the Natural Science Foundation of Hebei Province,China(No.E2021209147)the Key Research Project of North China University of Science and Technology(No.ZD-ST-202308)the Postgraduate Innovation Funding Project of Hebei Province,China(No.CXZZBS2024135).
文摘Calcium ferrite(CF)is recognized as a potential green and efficient functional material because of its advantages of magnetism,electrochemistry,catalysis,and biocompatibility in the fields of materials chemistry,environmental engineering,and biomedicine.There-fore,the obtained research results need to be systematically summarized,and new perspectives on CF and its composite materials need to be analyzed.Based on the presented studies of CF and its composite materials,the types and structures of the crystal are summarized.In addition,the current application technologies and theoretical mechanisms with various properties in different fields are elucidated.Moreover,the various preparation methods of CF and its composite materials are elaborated in detail.Most importantly,the advantages and disadvantages of the synthesis methods of CF and its composite materials are discussed,and the existing problems and emerging challenges in practical production are identified.Furthermore,the key future research directions of CF and its composite materials have been prospected from the potential application technologies to provide references for its synthesis and efficient utilization.
文摘Domaining is a crucial process in geostatistics, particularly when significant spatial variations are observed within a site, as these variations can significantly affect the outcomes of spatial modeling. This study investigates the application of hard and fuzzy clustering algorithms for domain delineation, using geological and geochemical data from two exploration campaigns at the eastern Kahang deposit in central Iran. The dataset includes geological layers (lithology, alteration, and mineral zones), geochemical layers (Cu, Mo, Ag, and Au grades), and borehole coordinates. Six clustering algorithms—K-means, hierarchical, affinity propagation, self-organizing map (SOM), fuzzy C-means, and Gustafson-Kessel—were applied to determine the optimal number of clusters, which ranged from 3 to 4. The fuzziness and weighting parameters were found to range from 1.1 to 1.3 and 0.1 to 0.3, respectively, based on the evaluation of various hard and fuzzy cluster validity indices. Directional variograms were computed to assess spatial anisotropy, and the anisotropy ellipsoid for each domain was defined to identify the model with the highest level of anisotropic discrimination among the domains. The SOM algorithm, which incorporated both qualitative and quantitative data, produced the best model, resulting in the identification of three distinct domains. These findings underscore the effectiveness of combining clustering techniques with variogram analysis for accurate domain delineation in geostatistical modeling.
文摘This work aimed to(i)understand conventional and pulse gas tungsten arc welding(GTAW)of AZ31B,and(ii)explore high frequency welding(100 Hz-1500 Hz).GTA welding with alternating current(AC)and direct current electrode positive(DCEP)polarities yielded crack-free partial penetration welds for6 mm thick AZ31B alloy sheet.Welding under direct current electrode negative(DCEN)polarity with identical parameters as that for AC and DCEP resulted in full penetration welds that had microcracks.Defect-free full-penetration welds could be accomplished with pulse GTA welding using DCEN polarity at a pulse frequency of 1 Hz with a pulse duration ratio of 1:1.The resultant DCEN P 1:1 weld metal had a microstructure finer than the conventional DCEN weld.Welds produced with pulse duration ratios of 1:2and 1:4 lacked penetration but had a much finer microstructures because of the lower heat input.The arc constriction by the high frequency pulsing in the Activ Arc■-High frequency(AA-HF)mode welding was responsible for deeper penetration.Welds produced under DCEN pulsing and AA-HF conditions had hardness higher than conventional DCEN,DCEP and AC GTA welds,attributed to the finer microstructure.AA-HF GTA welding produced defect free deeper penetration welds with good microstructural features/mechanical properties and also gave an advantage of 50%enhanced productivity when welded at1500 Hz.
文摘This paper attempts to quantify the effect of backfilling on pillar strength in highwall mining using numerical modelling. Calibration against the new empirical strength formula for highwall mining was conducted to obtain the material parameters used in the numerical modelling. With the obtained coal strength parameters, three sets of backfill properties were investigated. The results reveal that the behavior of pillars varies with the type and amount of backfill as well as the pillar width to mining height ratio(w/h). In case of cohesive backfill, generally 75% backfill shows a significant increase in peak strength, and the increase in peak strength is more pronounced for the pillars having lower w/h ratios. In case of noncohesive backfill, the changes in both the peak and residual strengths with up to 92% backfill are negligible while the residual strength constantly increases after reaching the peak strength only when 100%backfill is placed. Based on the modelling results, different backfilling strategies should be considered on a case by case basis depending on the type of backfill available and desired pillar dimension.
基金This study was funded by the National Natural Science Foundation for Young Scientists of China(No.51804209)National Natural Science Foundation of China-Shanxi Joint Fund for Coal-Based Low-Carbon Technology(No.U1710258)Applied Basic Research Programs,Science and Technology Foundation for Youths of Shanxi Province,China(No.201801D221363).
文摘With the depletion of easily minable coal seams,less favorable reserves under adverse conditions have to be mined out to meet the market demand.Due to some historical reasons,large amount of remnant coal was left unrecovered.One such case history occurred with the remnant rectangular stripe coal pillars using partial extraction method at Guandi Mine,Shanxi Province,China.The challenge that the coal mine was facing was that there is an ultra-close coal seam right under it with an only 0.8–1.5 m sandstone dirt band in between.The simulation study was carried out to investigate the simultaneous recovery of upper remnant coal pillars while mining the ultra-close lower panel using longwall top coal caving(LTCC).The remnant coal pillar was induced to cave in as top coal in LTCC system.Physical modelling shows that the coal pillars are the abutments of the stress arch structure formed within the overburden strata.The stability of overhanging roof strata highly depends on the stability of the remnant coal pillars.And the gob development(roof strata cave-in)is intermittent with the cave-in of these coal pillars and the sandstone dirt band.FLAC3D numerical modelling shows that the multi-seam interaction has a significant influence on mining-induced stress environment for mining of lower panels.The pattern of the stress evolution on the coal pillars with the advance of the lower working face was found.It is demonstrated that the stress relief of a remnant coal pillar enhances the caveability of the pillars and sandstone dirt band below.
基金The research is supported by National Key R&D Program of China(No.2017YFC060300204)National Natural Science Foundation of China(No.52074293)+2 种基金Hebei Province Natural Science Foundation of China(No.E2020402041)Yue Qi Young Scholar Project,CUMTB and Yue Qi Distinguished Scholar Project(No.800015Z1138)China University of Mining&Technology,Beijing.
文摘In the Kaiping Coal field,mining of five coal seams,located within 80 m in the Kailuan Group,#5,#7,#8,#9 and#12 coal seam,is difficult due to small interburden thickness,concentrated stress distributions,high coal seam metamorphism,and complex geological conditions.By using the ZTR12 geological penetration radar(GPR)survey combined with borehole observations,the overburden caving due to mining of the five coals seams was measured.The development characteristics of full-cover rock fractures after mining were obtained from the GPR scan,which provides a measurement basis for the control of rock strata in close multiple coal seam mining.For the first time,it was found that the overburden caving pattern shows a periodic triangular caved characteristic.Furthermore,it is proposed that an upright triangular collapsed pile masonry and an inverted triangular with larger fragments piled up alternately appear in the lower gob.The research results show that the roof structure formed in the gob area can support the key overlying strata,which is beneficial to ensure the integrity and stability of the upper coal seams in multiple-seam mining of close coal seams.