Using real fields instead of complex ones, it was recently claimed, that all fermions are made of pairs of coupled fields (strings) with an internal tension related to mutual attraction forces, related to Planck’s co...Using real fields instead of complex ones, it was recently claimed, that all fermions are made of pairs of coupled fields (strings) with an internal tension related to mutual attraction forces, related to Planck’s constant. The solution to Dirac equation gives four, real, 2-vectors solutions ψ1=(U1D1)ψ2=(U2D2)ψ3=(U3D3)ψ4=(U4D4)where (ψ1,ψ4) are coupled via linear combinations to yield spin-up and spin-down fermions. Likewise, (ψ2,ψ3) are coupled via linear combinations to represent spin-up and spin-down anti-fermions. Here, a deeper investigation of the free fermion internal frequency is discussed, hinting to an exchange interaction between the two components of which a fermion is made of. An upper limit estimate is given to the strength of this interaction.展开更多
Using real fields instead of complex ones, it is suggested here that the fermions are pairs of coupled strings with an internal tension. The interaction between the two coupled strings is due to an exchange mechanism ...Using real fields instead of complex ones, it is suggested here that the fermions are pairs of coupled strings with an internal tension. The interaction between the two coupled strings is due to an exchange mechanism which is proportional to Planck’s constant. This may be the result of two massless bosons (hypergluons) coupled by a preon (prequark) exchange. It also gives a physical explanation to the origin of the Planck constant, and origin of spin.展开更多
The singularity at distance r → 0 at the center of a spherically symmetric non-rotating, uncharged mass of radius R, is considered here. Under inverse square law force, the Schwarzschild metric, needs to be modified,...The singularity at distance r → 0 at the center of a spherically symmetric non-rotating, uncharged mass of radius R, is considered here. Under inverse square law force, the Schwarzschild metric, needs to be modified, to include Newton’s Shell Theorem (NST). By including NST for r, both Schwarzschild singularity at r = 2GM/c2 and at r → 0 singularities are removed from the metric. Near R → 0, the question of maximal density is considered based on Schwarzschild’s modified metric, and compared to the quantum limit of maximal mass density put by Planck’s quantum-based universal units. It is asserted, that General relativity, when combined with Planck’s universal units, inevitably leads to quantization of gravity.展开更多
Using real fields instead of complex ones, it was recently claimed, that all fermions are made of pairs of coupled fields (strings) with an internal tension related to mutual attraction forces, related to Planck’s co...Using real fields instead of complex ones, it was recently claimed, that all fermions are made of pairs of coupled fields (strings) with an internal tension related to mutual attraction forces, related to Planck’s constant. Quantum mechanics is described with real fields and real operators. Schrodinger and Dirac equations then are solved. The solution to Dirac equation gives four, real, 2-vectors solutions ψ1=(U1D1)ψ2=(U2D2)ψ3=(U3D3)ψ4=(U4D4)where (ψ1,ψ4) are coupled via linear combinations to yield spin-up and spin-down fermions. Likewise, (ψ2,ψ3) are coupled via linear combinations to represent spin-up and spin-down anti-fermions. For an incoming entangled pair of fermions, the combined solution is Ψin=c1ψ1+c4ψ4where c1and c4are some hidden variables. By applying a magnetic field in +Z and +x the theoretical results of a triple Stern-Gerlach experiment are predicted correctly. Then, by repeating Bell’s and Mermin Gedanken experiment with three magnetic filters σθ, at three different inclination angles θ, the violation of Bell’s inequality is proven. It is shown that all fermions are in a mixed state of spins and the ratio between spin-up to spin-down depends on the hidden variables.展开更多
The connection between the number of dimensions and the size of the representation matrices in the Dirac equation has been discussed thoroughly and the restriction N<sup>2</sup> = 2<sup>D</sup>...The connection between the number of dimensions and the size of the representation matrices in the Dirac equation has been discussed thoroughly and the restriction N<sup>2</sup> = 2<sup>D</sup> was derived. In this summary, the result is brought again, this time with emphasis on the importance of irreducibility of the representations. As a counter example, the case of the neutrino is discussed where the above restriction does not hold, indicating that the Dirac equation, in this case, is reducible.展开更多
Making use of Newton’s classical shell theorem, the Schwarzschild metric is modified. This removes the singularity at r = 0 for a standard object (not a black hole). It is demonstrated how general relativity evidentl...Making use of Newton’s classical shell theorem, the Schwarzschild metric is modified. This removes the singularity at r = 0 for a standard object (not a black hole). It is demonstrated how general relativity evidently leads to quantization of space-time. Both classical and quantum mechanical limits on density give the same result. Based on Planck’s length and the assumption that density must have an upper limit, we conclude that the lower limit of the classical gravitation theory by Einstein is related to the Planck length, which is a quantum phenomenon posed by dimensional analysis of the universal constants. The Ricci tensor is considered under extreme densities (where Kretschmann invariant = 0) and a solution is considered for both outside and inside the object. Therefore, classical relativity and the relationship between the universal constants lead to quantization of space. A gedanken experiment of light passing through an extremely dense object is considered, which will allow for evaluation of the theory.展开更多
The existence of strings has not yet been proven, but if a fermion is considered as being made up of two coupled strings, then the coupling between these two strings creates tension in the strings, and this tension is...The existence of strings has not yet been proven, but if a fermion is considered as being made up of two coupled strings, then the coupling between these two strings creates tension in the strings, and this tension is proportional to the coupling force via the Planck constant. This provides an explanation for the origin of the Planck constant.展开更多
文摘Using real fields instead of complex ones, it was recently claimed, that all fermions are made of pairs of coupled fields (strings) with an internal tension related to mutual attraction forces, related to Planck’s constant. The solution to Dirac equation gives four, real, 2-vectors solutions ψ1=(U1D1)ψ2=(U2D2)ψ3=(U3D3)ψ4=(U4D4)where (ψ1,ψ4) are coupled via linear combinations to yield spin-up and spin-down fermions. Likewise, (ψ2,ψ3) are coupled via linear combinations to represent spin-up and spin-down anti-fermions. Here, a deeper investigation of the free fermion internal frequency is discussed, hinting to an exchange interaction between the two components of which a fermion is made of. An upper limit estimate is given to the strength of this interaction.
文摘Using real fields instead of complex ones, it is suggested here that the fermions are pairs of coupled strings with an internal tension. The interaction between the two coupled strings is due to an exchange mechanism which is proportional to Planck’s constant. This may be the result of two massless bosons (hypergluons) coupled by a preon (prequark) exchange. It also gives a physical explanation to the origin of the Planck constant, and origin of spin.
文摘The singularity at distance r → 0 at the center of a spherically symmetric non-rotating, uncharged mass of radius R, is considered here. Under inverse square law force, the Schwarzschild metric, needs to be modified, to include Newton’s Shell Theorem (NST). By including NST for r, both Schwarzschild singularity at r = 2GM/c2 and at r → 0 singularities are removed from the metric. Near R → 0, the question of maximal density is considered based on Schwarzschild’s modified metric, and compared to the quantum limit of maximal mass density put by Planck’s quantum-based universal units. It is asserted, that General relativity, when combined with Planck’s universal units, inevitably leads to quantization of gravity.
文摘Using real fields instead of complex ones, it was recently claimed, that all fermions are made of pairs of coupled fields (strings) with an internal tension related to mutual attraction forces, related to Planck’s constant. Quantum mechanics is described with real fields and real operators. Schrodinger and Dirac equations then are solved. The solution to Dirac equation gives four, real, 2-vectors solutions ψ1=(U1D1)ψ2=(U2D2)ψ3=(U3D3)ψ4=(U4D4)where (ψ1,ψ4) are coupled via linear combinations to yield spin-up and spin-down fermions. Likewise, (ψ2,ψ3) are coupled via linear combinations to represent spin-up and spin-down anti-fermions. For an incoming entangled pair of fermions, the combined solution is Ψin=c1ψ1+c4ψ4where c1and c4are some hidden variables. By applying a magnetic field in +Z and +x the theoretical results of a triple Stern-Gerlach experiment are predicted correctly. Then, by repeating Bell’s and Mermin Gedanken experiment with three magnetic filters σθ, at three different inclination angles θ, the violation of Bell’s inequality is proven. It is shown that all fermions are in a mixed state of spins and the ratio between spin-up to spin-down depends on the hidden variables.
文摘The connection between the number of dimensions and the size of the representation matrices in the Dirac equation has been discussed thoroughly and the restriction N<sup>2</sup> = 2<sup>D</sup> was derived. In this summary, the result is brought again, this time with emphasis on the importance of irreducibility of the representations. As a counter example, the case of the neutrino is discussed where the above restriction does not hold, indicating that the Dirac equation, in this case, is reducible.
文摘Making use of Newton’s classical shell theorem, the Schwarzschild metric is modified. This removes the singularity at r = 0 for a standard object (not a black hole). It is demonstrated how general relativity evidently leads to quantization of space-time. Both classical and quantum mechanical limits on density give the same result. Based on Planck’s length and the assumption that density must have an upper limit, we conclude that the lower limit of the classical gravitation theory by Einstein is related to the Planck length, which is a quantum phenomenon posed by dimensional analysis of the universal constants. The Ricci tensor is considered under extreme densities (where Kretschmann invariant = 0) and a solution is considered for both outside and inside the object. Therefore, classical relativity and the relationship between the universal constants lead to quantization of space. A gedanken experiment of light passing through an extremely dense object is considered, which will allow for evaluation of the theory.
文摘The existence of strings has not yet been proven, but if a fermion is considered as being made up of two coupled strings, then the coupling between these two strings creates tension in the strings, and this tension is proportional to the coupling force via the Planck constant. This provides an explanation for the origin of the Planck constant.