This paper presents a simple nonparametric regression approach to data-driven computing in elasticity. We apply the kernel regression to the material data set, and formulate a system of nonlinear equations solved to o...This paper presents a simple nonparametric regression approach to data-driven computing in elasticity. We apply the kernel regression to the material data set, and formulate a system of nonlinear equations solved to obtain a static equilibrium state of an elastic structure. Preliminary numerical experiments illustrate that, compared with existing methods, the proposed method finds a reasonable solution even if data points distribute coarsely in a given material data set.展开更多
Accelerated proximal gradient methods have recently been developed for solving quasi-static incremental problems of elastoplastic analysis with some different yield criteria.It has been demonstrated through numerical ...Accelerated proximal gradient methods have recently been developed for solving quasi-static incremental problems of elastoplastic analysis with some different yield criteria.It has been demonstrated through numerical experiments that these methods can outperform conventional optimization-based approaches in computational plasticity.However,in literature these algorithms are described individually for specific yield criteria,and hence there exists no guide for application of the algorithms to other yield criteria.This short paper presents a general form of algorithm design,independent of specific forms of yield criteria,that unifies the existing proximal gradient methods.Clear interpretation is also given to each step of the presented general algorithm so that each update rule is linked to the underlying physical laws in terms of mechanical quantities.展开更多
Data-driven computing in elasticity attempts to directly use experimental data on material,without constructing an empirical model of the constitutive relation,to predict an equilibrium state of a structure subjected ...Data-driven computing in elasticity attempts to directly use experimental data on material,without constructing an empirical model of the constitutive relation,to predict an equilibrium state of a structure subjected to a specified external load.Provided that a data set comprising stress-strain pairs of material is available,a data-driven method using the kernel method and the regularized least-squares was developed to extract a manifold on which the points in the data set approximately lie(Kanno 2021,Jpn.J.Ind.Appl.Math.).From the perspective of physical experiments,stress field cannot be directly measured,while displacement and force fields are measurable.In this study,we extend the previous kernel method to the situation that pairs of displacement and force,instead of pairs of stress and strain,are available as an input data set.A new regularized least-squares problem is formulated in this problem setting,and an alternating minimization algorithm is proposed to solve the problem.展开更多
The existence of an infinite sequence of sign-changing solutions are proved for a class of quasilinear elliptic equations under suitable conditions on the quasilinear coefficients and the nonlinearity ■on aΩ ,where...The existence of an infinite sequence of sign-changing solutions are proved for a class of quasilinear elliptic equations under suitable conditions on the quasilinear coefficients and the nonlinearity ■on aΩ ,where Ω∈ C RN is a bounded domain with smooth boundary,and we use du 2u d D;u=x,Dju=;dxjdxj and D2bj;(z)=;bj(2).The main interest of this paper is for the case of bounded quasilinearity bj.The result is proved by an elliptic regularization method involving truncations of both u and the gradient of u.展开更多
基金supported by JSPS KAKENHI (Grants 17K06633 and 18K18898)
文摘This paper presents a simple nonparametric regression approach to data-driven computing in elasticity. We apply the kernel regression to the material data set, and formulate a system of nonlinear equations solved to obtain a static equilibrium state of an elastic structure. Preliminary numerical experiments illustrate that, compared with existing methods, the proposed method finds a reasonable solution even if data points distribute coarsely in a given material data set.
文摘Accelerated proximal gradient methods have recently been developed for solving quasi-static incremental problems of elastoplastic analysis with some different yield criteria.It has been demonstrated through numerical experiments that these methods can outperform conventional optimization-based approaches in computational plasticity.However,in literature these algorithms are described individually for specific yield criteria,and hence there exists no guide for application of the algorithms to other yield criteria.This short paper presents a general form of algorithm design,independent of specific forms of yield criteria,that unifies the existing proximal gradient methods.Clear interpretation is also given to each step of the presented general algorithm so that each update rule is linked to the underlying physical laws in terms of mechanical quantities.
基金supported by Research Grant from the Kajima Foundation,JST CREST Grant No.JPMJCR1911,JapanJSPS KAKENHI(Nos.17K06633,21K04351).
文摘Data-driven computing in elasticity attempts to directly use experimental data on material,without constructing an empirical model of the constitutive relation,to predict an equilibrium state of a structure subjected to a specified external load.Provided that a data set comprising stress-strain pairs of material is available,a data-driven method using the kernel method and the regularized least-squares was developed to extract a manifold on which the points in the data set approximately lie(Kanno 2021,Jpn.J.Ind.Appl.Math.).From the perspective of physical experiments,stress field cannot be directly measured,while displacement and force fields are measurable.In this study,we extend the previous kernel method to the situation that pairs of displacement and force,instead of pairs of stress and strain,are available as an input data set.A new regularized least-squares problem is formulated in this problem setting,and an alternating minimization algorithm is proposed to solve the problem.
基金The authors would like to thank the referee for carefully reading the paper and for helpful suggestions.The work is partially supported by NSFC(Nos.11761082,11671364,11771324 and 11831009).
文摘The existence of an infinite sequence of sign-changing solutions are proved for a class of quasilinear elliptic equations under suitable conditions on the quasilinear coefficients and the nonlinearity ■on aΩ ,where Ω∈ C RN is a bounded domain with smooth boundary,and we use du 2u d D;u=x,Dju=;dxjdxj and D2bj;(z)=;bj(2).The main interest of this paper is for the case of bounded quasilinearity bj.The result is proved by an elliptic regularization method involving truncations of both u and the gradient of u.