Based on the structural characteristics of the high-speed loading tester,a four-point bending test device was designed to carry out the four-point bending strength test of glass under the action of static load and dif...Based on the structural characteristics of the high-speed loading tester,a four-point bending test device was designed to carry out the four-point bending strength test of glass under the action of static load and different impact velocities,and the formulae for calculating the maximum dynamic stress and strain rate of glass specimens under the action of impact loads were derived.The experimental results show that the bending strength values of the glass under dynamic impact loading are all higher than those under static loading.With the increase of impact speed,the bending strength value of glass specimens generally tends to increase,and the bending strength value increases more obviously when the impact speed exceeds 0.5 m/s or higher.By increasing the impact velocity,higher tensile strain rate of glass specimens can be obtained because the load action time becomes shorter.The bending strength of the glass material increases with its tensile strain rate,and when the tensile strain rate is between 0 and 2 s^(-1),the bending strength of the glass specimen grows more obviously with the strain rate,indicating that the glass bending strength is particularly sensitive to the tensile strain rate in this interval.As the strain rate increases,the number of cracks formed after glass breakage increases significantly,thus requiring more energy to drive the crack formation and expansion,and showing the strain rate effect of bending strength at the macroscopic level.The results of the study can provide a reference for the load bearing and structural design of glass materials under dynamic loading.展开更多
Niobates are promising all-climate Li^(+)-storage anode material due to their fast charge transport,large specific capacities,and resistance to electrolyte reaction.However,their moderate unit-cellvolume expansion(gen...Niobates are promising all-climate Li^(+)-storage anode material due to their fast charge transport,large specific capacities,and resistance to electrolyte reaction.However,their moderate unit-cellvolume expansion(generally 5%–10%)during Li^(+)storage causes unsatisfactory long-term cyclability.Here,“zero-strain”NiNb_(2)O_(6) fibers are explored as a new anode material with comprehensively good electrochemical properties.During Li^(+)storage,the expansion of electrochemical inactive NiO_(6) octahedra almost fully offsets the shrinkage of active NbO_(6) octahedra through reversible O movement.Such superior volume-accommodation capability of the NiO_(6) layers guarantees the“zero-strain”behavior of NiNb_(2)O_(6) in a broad temperature range(0.53%//0.51%//0.74%at 25//−10//60℃),leading to the excellent cyclability of the NiNb_(2)O_(6) fibers(92.8%//99.2%//91.1%capacity retention after 1000//2000//1000 cycles at 10C and 25//−10//60℃).This NiNb_(2)O_(6) material further exhibits a large reversible capacity(300//184//318 mAh g−1 at 0.1C and 25//−10//60℃)and outstanding rate performance(10 to 0.5C capacity percentage of 64.3%//50.0%//65.4%at 25//−10//60℃).Therefore,the NiNb_(2)O_(6) fibers are especially suitable for large-capacity,fast-charging,long-life,and all-climate lithium-ion batteries.展开更多
Atomic-scale doping strategies and structure design play pivotal roles in tailoring the electronic structure and physicochemical property of electromagnetic wave absorption(EMWA)materials.However,the relationship betw...Atomic-scale doping strategies and structure design play pivotal roles in tailoring the electronic structure and physicochemical property of electromagnetic wave absorption(EMWA)materials.However,the relationship between configuration and electromagnetic(EM)loss mechanism has remained elusive.Herein,drawing inspiration from the DNA transcription process,we report the successful synthesis of novel in situ Mn/N co-doped helical carbon nanotubes with ultrabroad EMWA capability.Theoretical calculation and EM simulation confirm that the orbital coupling and spin polarization of the Mn–N4–C configuration,along with cross polarization generated by the helical structure,endow the helical converters with enhanced EM loss.As a result,HMC-8 demonstrates outstanding EMWA performance,achieving a minimum reflection loss of−63.13 dB at an ultralow thickness of 1.29 mm.Through precise tuning of the graphite domain size,HMC-7 achieves an effective absorption bandwidth(EAB)of 6.08 GHz at 2.02 mm thickness.Furthermore,constructing macroscale gradient metamaterials enables an ultrabroadband EAB of 12.16 GHz at a thickness of only 5.00 mm,with the maximum radar cross section reduction value reaching 36.4 dB m2.This innovative approach not only advances the understanding of metal–nonmetal co-doping but also realizes broadband EMWA,thus contributing to the development of EMWA mechanisms and applications.展开更多
The synthesis of carbon supporter/nanoscale high-entropy alloys(HEAs)electromagnetic response composites by carbothermal shock method has been identified as an advanced strategy for the collaborative competition engin...The synthesis of carbon supporter/nanoscale high-entropy alloys(HEAs)electromagnetic response composites by carbothermal shock method has been identified as an advanced strategy for the collaborative competition engineering of conductive/dielectric genes.Electron migration modes within HEAs as manipulated by the electronegativity,valence electron configurations and molar proportions of constituent elements determine the steady state and efficiency of equivalent dipoles.Herein,enlightened by skin-like effect,a reformative carbothermal shock method using carbonized cellulose paper(CCP)as carbon supporter is used to preserve the oxygencontaining functional groups(O·)of carbonized cellulose fibers(CCF).Nucleation of HEAs and construction of emblematic shell-core CCF/HEAs heterointerfaces are inextricably linked to carbon metabolism induced by O·.Meanwhile,the electron migration mode of switchable electronrich sites promotes the orientation polarization of anisotropic equivalent dipoles.By virtue of the reinforcement strategy,CCP/HEAs composite prepared by 35%molar ratio of Mn element(CCP/HEAs-Mn_(2.15))achieves efficient electromagnetic wave(EMW)absorption of−51.35 dB at an ultra-thin thickness of 1.03 mm.The mechanisms of the resulting dielectric properties of HEAs-based EMW absorbing materials are elucidated by combining theoretical calculations with experimental characterizations,which provide theoretical bases and feasible strategies for the simulation and practical application of electromagnetic functional devices(e.g.,ultra-wideband bandpass filter).展开更多
Antibacterial ceramic was prepared by doping enamel slurry with composite phosphate inorganic antibacterial materials containing rare earth (inorganic antibacterial additives), and then the mechanisms for activating w...Antibacterial ceramic was prepared by doping enamel slurry with composite phosphate inorganic antibacterial materials containing rare earth (inorganic antibacterial additives), and then the mechanisms for activating water and improving seed germinative property were tested by nuclear magnetic resonance (NMR) and the method of testing oxygen dissolved in activated water. Results show that the half peak width of (()^(17)O-NMR) for tap water activated by the antibacterial ceramic drops from 115.36 to 99.15 Hz, and oxygen concentrations of activated water increase by 20%, germinate rate of horsebean and earthnut seeds increases by 12.5% and 7.5%, respectively. Therefore antibacterial ceramic doped enamel slurry with inorganic antibacterial additives containing rare earth can reduce the volume of clusters of water molecules, improve activation of tap water, and promote plant seeds germinate.展开更多
Conventionally, an experimentally determined phase diagram requires studies of phase formation at a range of temperatures for each composition, which takes years of effort from multiple research groups. Combinatorial ...Conventionally, an experimentally determined phase diagram requires studies of phase formation at a range of temperatures for each composition, which takes years of effort from multiple research groups. Combinatorial materials chip technology, featuring high-throughput synthesis and characterization, is able to determine the phase diagram of an entire composition spread of a binary or ternary system at a single temperature on one materials library, which, though significantly increasing efficiency, still requires many libraries processed at a series of temperatures in order to complete a phase diagram. In this paper, we propose a "one-chip method" to construct a complete phase diagram by individually synthesizing each pixel step by step with a progressive pulse of energy to heat at different temperatures while monitoring the phase evolution on the pixel in situ in real time. Repeating this process pixel by pixel throughout the whole chip allows the entire binary or ternary phase diagram to be mapped on one chip in a single experiment. The feasibility of this methodology is demonstrated in a study of a Ge-Sb-Te ternary alloy system, on which the amorphouscrystalline phase boundary is determined.展开更多
The fused cast alumina-zirconia-silica(AZS)refractory is an indispensable material of the glass melting furnace,because of its outstanding corrosion resistance and low pollution to glass production.The exudation is on...The fused cast alumina-zirconia-silica(AZS)refractory is an indispensable material of the glass melting furnace,because of its outstanding corrosion resistance and low pollution to glass production.The exudation is one important index to evaluate the performance of fused cast AZS refractory products.In order to study the effects of chemical composition and microstructure on the exudation of fused cast AZS refractory materials,three types of fused-cast AZS refractory bricks(AZS33#,AZS36#and AZS41#)were selected from several companies as the research object,and their composition,bulk density,apparent porosity,the value of exudation,static corrosion rate and microstructure were discussed.The results show that the chemical composition,especially the content of SiO2 and Na2O,and the distribution of zirconia would greatly affect the content and viscosity of glass phase,thus affecting the glass exudation.This work will provide technical reference for the development of low exudation AZS refractories.展开更多
Hydration-heat-inhibiting materials(HIM)with polysaccharide as core material was prepared using microcapsule sustained-releasing technology,through a centrifugal spray granulation process after melting together.The pr...Hydration-heat-inhibiting materials(HIM)with polysaccharide as core material was prepared using microcapsule sustained-releasing technology,through a centrifugal spray granulation process after melting together.The preparation process parameters of HIM were selected by the semi-adiabatic temperature rise test of cement paste.TAM air microcalorimeter was used to investigate the regulation performance of HIM on the hydration of cement.The influence of HIM on the microstructure of cement was investigated by XRD,SEM,and TG-DSC.The results showed that the most suitable wall material for HIM was polyethylene wax,the optimum polyethylene wax/polysaccharide mass ratio was 1,and the most effective particle size was 0.16-0.30 mm.Polysaccharide coated by polyethylene wax released slowly,and the peak heat release rate of cement could be reduced by 55.2%after continuous regulaion.The regulation period continued to 120 h.HIM mainly decreased the C3S reaction rate,which resulted in a 39.2%peak value reduction of hydration heat release rate.However,HIM had little regulation on C3A.The hydration heat release process of cement-based materials can be designed by adjusting the dosage of HIM.展开更多
The co-operation action mechanism and model of photon-ion catalysis synergy material composed of thallium and valency-variable rare earth elements and semiconductor oxide were proposed. The radiation catalysis reactio...The co-operation action mechanism and model of photon-ion catalysis synergy material composed of thallium and valency-variable rare earth elements and semiconductor oxide were proposed. The radiation catalysis reactions of water and oxygen assisted by the synergy material that could largely increase electron, free radical and negative ion products were discussed. The applications of photon-ion catalysis synergy material in areas of air cleaning material, antibacterial material , healthy material and energy resource material were suggested.展开更多
Based on the principle of ENV 196-4 "Methods of testing cement - Part 4 Quantitative determination of constituents or Chinese Standard GB/12960-2007 Quantitative measurement of mineral admixtures in cement, methods w...Based on the principle of ENV 196-4 "Methods of testing cement - Part 4 Quantitative determination of constituents or Chinese Standard GB/12960-2007 Quantitative measurement of mineral admixtures in cement, methods were developed for quantitative determination of fly ash, slag and limestone powder in fresh cement pastes, mortars and concretes. Limestone powder was determined using thermal analysis method. The residue content of fly ash on an 80um sieve, and silt contents of aggregate were also considered during the quantitative determination of mineral composition of quaternary cementitious system. With the developed methods, the deviations between the measured and the actual mineral contents of the constituent in the eemantitious material in fresh cement paste, mortar and concrete, were within 3%.展开更多
Large quantity of negative ions and hydrogen can be produced continuously by metal ions of tourmaline under the synergy action of light, water and oxygen. In order to promote this effect, the photon-ion-catalyzed rare...Large quantity of negative ions and hydrogen can be produced continuously by metal ions of tourmaline under the synergy action of light, water and oxygen. In order to promote this effect, the photon-ion-catalyzed rare earth functional synergy material was prepared to simulate the nature properties of tourmaline. Its safety was discussed and an interaction model proposed. The investigation results show that the cooperation of sunlight, valency-variable rare earth element thorium includes material and photo-catalyzed TiO_2 can increase the product of free radicals and negative ions. It is safety to use thorium included rare earth or rare earth waste with radiant dose smaller than 1Gy.展开更多
The properties of rare earth materials activated diesel oil such as temperature, density and hydroxylic radical were discussed. Rare earth materials including minim thorium oxide powders which had radioactivity were m...The properties of rare earth materials activated diesel oil such as temperature, density and hydroxylic radical were discussed. Rare earth materials including minim thorium oxide powders which had radioactivity were mainly composed of rare earth waste-residue powders. Under the radiation catalysis of rare earth materials, molecules of diesel oil can be transformed into activated molecules, the collision frequency increases among molecules, and temperature raises a little higher than usual. When temperature is higher, the interaction force between molecules is lessened, distance between molecules is shortened. The volume is increased and the density is decreased. A large amounts electrons and negative ions are produced by rare earth materials, which leads to the signals of hydroxylic radical stronger that means rare earth materials can activate diesel oil and can improve the activity of diesel oil.展开更多
It is difficult to ensure the manufacturing process of composites for the reason that there are complicated processes during curing process of composites. The cure cycle has a significant effect on the quality of the ...It is difficult to ensure the manufacturing process of composites for the reason that there are complicated processes during curing process of composites. The cure cycle has a significant effect on the quality of the finished part. The traditional cure cycle based on empirical approach could not ensure the quality of cured products because of unstabilized performance, high cost of production and low efficiency. As complex intelligent manufacturing systems are developed increasingly in industry, the necessity of more user friendly operation system is becoming progressively importance for their utilization and market value. This paper introduces some of the recent technological advances in the intelligent manufacturing systems that will influence the design and development of relevant industry.展开更多
The exploration of novel multivariate heterostructures has emerged as a pivotal strategy for developing high-performance electromagnetic wave(EMW)absorption materials.However,the loss mechanism in traditional heterost...The exploration of novel multivariate heterostructures has emerged as a pivotal strategy for developing high-performance electromagnetic wave(EMW)absorption materials.However,the loss mechanism in traditional heterostructures is relatively simple,guided by empirical observations,and is not monotonous.In this work,we presented a novel semiconductor-semiconductor-metal heterostructure sys-tem,Mo-MXene/Mo-metal sulfides(metal=Sn,Fe,Mn,Co,Ni,Zn,and Cu),including semiconductor junctions and Mott-Schottky junctions.By skillfully combining these distinct functional components(Mo-MXene,MoS_(2),metal sulfides),we can engineer a multiple heterogeneous interface with superior absorption capabilities,broad effective absorption bandwidths,and ultrathin matching thickness.The successful establishment of semiconductor-semiconductor-metal heterostructures gives rise to a built-in electric field that intensifies electron transfer,as confirmed by density functional theory,which collaborates with multiple dielectric polarization mechanisms to substantially amplify EMW absorption.We detailed a successful synthesis of a series of Mo-MXene/Mo-metal sulfides featuring both semiconductor-semiconductor and semiconductor-metal interfaces.The achievements were most pronounced in Mo-MXene/Mo-Sn sulfide,which achieved remarkable reflection loss values of-70.6 dB at a matching thickness of only 1.885 mm.Radar cross-section calculations indicate that these MXene/Mo-metal sulfides have tremendous potential in practical military stealth technology.This work marks a departure from conventional component design limitations and presents a novel pathway for the creation of advanced MXene-based composites with potent EMW absorption capabilities.展开更多
Zirconium-based metal-organic framework UiO-66 was successfully prepared by solvothermal method,and UiO-66 was modified by adding regulators such as formic acid,acetic acid,and hydrochloric acid.The NH_(3)-SCR reactiv...Zirconium-based metal-organic framework UiO-66 was successfully prepared by solvothermal method,and UiO-66 was modified by adding regulators such as formic acid,acetic acid,and hydrochloric acid.The NH_(3)-SCR reactivity of the samples was evaluated by the denitration activity evaluation system,and the UiO-66 and the regulator-modified UiO-66 were characterized by XRD,SEM,BET,FTIR,TG,NH_(3)-TPD,etc.,the effects of regulator types on the structure and properties of UiO-66 were investigated.The experimental results show that,after adding the modifier,the morphology of UiO-66 changes from irregular quadrilateral with serious agglomeration to particles with regular crystal shape and good dispersibility,and the crystal morphology of the catalyst is improved.In addition,after adding the modifier,UiO-66 has a larger specific surface area and stronger surface acidity,which optimizes the catalytic performance of UiO-66.The catalytic performance test results of NH_(3)-SCR show that the low-temperature activity of UiO-66 is poor,and it only shows a certain catalytic activity at higher temperatures.The catalytic activity of UiO-66 was significantly improved after adding the regulator.Among them,the UiO-66-HCl modified with hydrochloric acid had the best catalytic activity,and the denitration rate reached 70%when the denitration temperature was 380℃.展开更多
High entropy carbides (HECds) are multi-component carbides consisting of transition metal carbides.HECds are generally composed of five or more metal cations of the equal or near-equal substances,obtaining a single cr...High entropy carbides (HECds) are multi-component carbides consisting of transition metal carbides.HECds are generally composed of five or more metal cations of the equal or near-equal substances,obtaining a single crystal structure.HECds have great potentials for future applications due to excellent mechanical,antioxidant and thermal properties.Due to their complex crystal structures and lattice distortion,computer simulations are widely used to efficiently associate the properties of HECds with the corresponding microstructures.In response to the development of HECds,this article provides an overview of the basic design,preparation process and properties of HECds.展开更多
As a non-destructive testing technology,neutron imaging plays an important role in various fields,including material science,nuclear engineering,and fundamental science.An imaging detector with a neutron-sensitive ima...As a non-destructive testing technology,neutron imaging plays an important role in various fields,including material science,nuclear engineering,and fundamental science.An imaging detector with a neutron-sensitive image intensifier has been developed and demonstrated to achieve good spatial resolution and timing resolution.However,the influence of the working voltage on the performance of the neutron-sensitive imaging intensifier has not been studied.To optimize the performance of the neutron-sensitive image intensifier at different voltages,experiments have been performed at the China Spallation Neutron Source(CSNS)neutron beamline.The change in the light yield and imaging quality with different voltages has been acquired.It is shown that the image quality benefits from the high gain of the microchannel plate(MCP)and the high accelerating electric field between the MCP and the screen.Increasing the accelerating electric field is more effective than increasing the gain of MCPs for the improvement of the imaging quality.Increasing the total gain of the MCP stack can be realized more effectively by improving the gain of the standard MCP than that of the n MCP.These results offer a development direction for image intensifiers in the future.展开更多
Two kinds of pure calcium aluminate cement(CAC)prepared by the sintering method and the electric melting method,respectively were analyzed in terms of the particle size,XRD patterns and hydration characteristics;and t...Two kinds of pure calcium aluminate cement(CAC)prepared by the sintering method and the electric melting method,respectively were analyzed in terms of the particle size,XRD patterns and hydration characteristics;and their effects on the hydration heat and construction performance of the cement-based castables were discussed.It is found that(1)the electric fused CAC contains 50.67%CA and 44.89%CA_(2),while the sintered CAC contains 74.57%CA and 22.97%CA_(2);in addition,compared to the sintered CAC,the electric fused CAC contains more C_(3)A,C_(12)A_7,and a small amount of amorphous phase;(2)the electric fused CAC(d_(50)of 7.93μm)has much smaller particle size than the sintered CAC(d_(50)of 12.51μm);(3)in the early stage of hydration,the exothermic peak of the electric fused CAC appears earlier and the heat flow rate is higher than that of the sintered CAC;the dormant period of the sintered CAC is relatively short and the main exothermic peak appears earlier than that of the electric fused CAC;(4)for cement-based castables,there is no obvious exothermic peak in the early hydration stage,but the temperature of the castables slightly increases;among them,the initial hydration temperature of the electric fused CAC-based castable is higher;and the main exothermic peak of the sintered CAC-based castable appears later than that of the electric fused CAC-based castable;(5)the exothermic heating on-site occurrs earlier,which is related to the higher environmental temperature(about 30℃);the on-site electric fused CAC-based castable begins to show more cracks during the exothermic peak stage.展开更多
基金Found by the National Natural Science Foundation of China(Nos.52072356 and 52032011)the Shandong Province Science and Technology Small and Medium-sized Enterprises Innovation Ability Improvement Project(No.2022TSGC1194)。
文摘Based on the structural characteristics of the high-speed loading tester,a four-point bending test device was designed to carry out the four-point bending strength test of glass under the action of static load and different impact velocities,and the formulae for calculating the maximum dynamic stress and strain rate of glass specimens under the action of impact loads were derived.The experimental results show that the bending strength values of the glass under dynamic impact loading are all higher than those under static loading.With the increase of impact speed,the bending strength value of glass specimens generally tends to increase,and the bending strength value increases more obviously when the impact speed exceeds 0.5 m/s or higher.By increasing the impact velocity,higher tensile strain rate of glass specimens can be obtained because the load action time becomes shorter.The bending strength of the glass material increases with its tensile strain rate,and when the tensile strain rate is between 0 and 2 s^(-1),the bending strength of the glass specimen grows more obviously with the strain rate,indicating that the glass bending strength is particularly sensitive to the tensile strain rate in this interval.As the strain rate increases,the number of cracks formed after glass breakage increases significantly,thus requiring more energy to drive the crack formation and expansion,and showing the strain rate effect of bending strength at the macroscopic level.The results of the study can provide a reference for the load bearing and structural design of glass materials under dynamic loading.
基金supported by the National Natural Science Foundation of China(51762014,52231007,12327804,T2321003,22088101)in part by the National Key Research Program of China under Grant 2021YFA1200600.
文摘Niobates are promising all-climate Li^(+)-storage anode material due to their fast charge transport,large specific capacities,and resistance to electrolyte reaction.However,their moderate unit-cellvolume expansion(generally 5%–10%)during Li^(+)storage causes unsatisfactory long-term cyclability.Here,“zero-strain”NiNb_(2)O_(6) fibers are explored as a new anode material with comprehensively good electrochemical properties.During Li^(+)storage,the expansion of electrochemical inactive NiO_(6) octahedra almost fully offsets the shrinkage of active NbO_(6) octahedra through reversible O movement.Such superior volume-accommodation capability of the NiO_(6) layers guarantees the“zero-strain”behavior of NiNb_(2)O_(6) in a broad temperature range(0.53%//0.51%//0.74%at 25//−10//60℃),leading to the excellent cyclability of the NiNb_(2)O_(6) fibers(92.8%//99.2%//91.1%capacity retention after 1000//2000//1000 cycles at 10C and 25//−10//60℃).This NiNb_(2)O_(6) material further exhibits a large reversible capacity(300//184//318 mAh g−1 at 0.1C and 25//−10//60℃)and outstanding rate performance(10 to 0.5C capacity percentage of 64.3%//50.0%//65.4%at 25//−10//60℃).Therefore,the NiNb_(2)O_(6) fibers are especially suitable for large-capacity,fast-charging,long-life,and all-climate lithium-ion batteries.
基金supported by the National Natural Science Foundation of China(22265021)the Aeronautical Science Foundation of China(2020Z056056003)Jiangxi Provincial Natural Science Foundation(20232BAB212004).
文摘Atomic-scale doping strategies and structure design play pivotal roles in tailoring the electronic structure and physicochemical property of electromagnetic wave absorption(EMWA)materials.However,the relationship between configuration and electromagnetic(EM)loss mechanism has remained elusive.Herein,drawing inspiration from the DNA transcription process,we report the successful synthesis of novel in situ Mn/N co-doped helical carbon nanotubes with ultrabroad EMWA capability.Theoretical calculation and EM simulation confirm that the orbital coupling and spin polarization of the Mn–N4–C configuration,along with cross polarization generated by the helical structure,endow the helical converters with enhanced EM loss.As a result,HMC-8 demonstrates outstanding EMWA performance,achieving a minimum reflection loss of−63.13 dB at an ultralow thickness of 1.29 mm.Through precise tuning of the graphite domain size,HMC-7 achieves an effective absorption bandwidth(EAB)of 6.08 GHz at 2.02 mm thickness.Furthermore,constructing macroscale gradient metamaterials enables an ultrabroadband EAB of 12.16 GHz at a thickness of only 5.00 mm,with the maximum radar cross section reduction value reaching 36.4 dB m2.This innovative approach not only advances the understanding of metal–nonmetal co-doping but also realizes broadband EMWA,thus contributing to the development of EMWA mechanisms and applications.
基金Financial support from the National Natural Science Foundation of China(52372289,52102368,52231007,12327804,T2321003,22088101,22178037 and U22A20424)Regional Joint Fund for Basic Research and Applied Basic Research of Guangdong Province(No.2020A1515110905)+1 种基金Guangdong Special Fund for key Areas(20237DZX3042)Shenzhen Stable Support Project,Liaoning Revitalization Talents Program(XLYC2002114)are highly appreciated.
文摘The synthesis of carbon supporter/nanoscale high-entropy alloys(HEAs)electromagnetic response composites by carbothermal shock method has been identified as an advanced strategy for the collaborative competition engineering of conductive/dielectric genes.Electron migration modes within HEAs as manipulated by the electronegativity,valence electron configurations and molar proportions of constituent elements determine the steady state and efficiency of equivalent dipoles.Herein,enlightened by skin-like effect,a reformative carbothermal shock method using carbonized cellulose paper(CCP)as carbon supporter is used to preserve the oxygencontaining functional groups(O·)of carbonized cellulose fibers(CCF).Nucleation of HEAs and construction of emblematic shell-core CCF/HEAs heterointerfaces are inextricably linked to carbon metabolism induced by O·.Meanwhile,the electron migration mode of switchable electronrich sites promotes the orientation polarization of anisotropic equivalent dipoles.By virtue of the reinforcement strategy,CCP/HEAs composite prepared by 35%molar ratio of Mn element(CCP/HEAs-Mn_(2.15))achieves efficient electromagnetic wave(EMW)absorption of−51.35 dB at an ultra-thin thickness of 1.03 mm.The mechanisms of the resulting dielectric properties of HEAs-based EMW absorbing materials are elucidated by combining theoretical calculations with experimental characterizations,which provide theoretical bases and feasible strategies for the simulation and practical application of electromagnetic functional devices(e.g.,ultra-wideband bandpass filter).
文摘Antibacterial ceramic was prepared by doping enamel slurry with composite phosphate inorganic antibacterial materials containing rare earth (inorganic antibacterial additives), and then the mechanisms for activating water and improving seed germinative property were tested by nuclear magnetic resonance (NMR) and the method of testing oxygen dissolved in activated water. Results show that the half peak width of (()^(17)O-NMR) for tap water activated by the antibacterial ceramic drops from 115.36 to 99.15 Hz, and oxygen concentrations of activated water increase by 20%, germinate rate of horsebean and earthnut seeds increases by 12.5% and 7.5%, respectively. Therefore antibacterial ceramic doped enamel slurry with inorganic antibacterial additives containing rare earth can reduce the volume of clusters of water molecules, improve activation of tap water, and promote plant seeds germinate.
基金supported in part by National High Technology Research and Development Program (2015AA034204)the National Natural Science Foundation of China (51472044)
文摘Conventionally, an experimentally determined phase diagram requires studies of phase formation at a range of temperatures for each composition, which takes years of effort from multiple research groups. Combinatorial materials chip technology, featuring high-throughput synthesis and characterization, is able to determine the phase diagram of an entire composition spread of a binary or ternary system at a single temperature on one materials library, which, though significantly increasing efficiency, still requires many libraries processed at a series of temperatures in order to complete a phase diagram. In this paper, we propose a "one-chip method" to construct a complete phase diagram by individually synthesizing each pixel step by step with a progressive pulse of energy to heat at different temperatures while monitoring the phase evolution on the pixel in situ in real time. Repeating this process pixel by pixel throughout the whole chip allows the entire binary or ternary phase diagram to be mapped on one chip in a single experiment. The feasibility of this methodology is demonstrated in a study of a Ge-Sb-Te ternary alloy system, on which the amorphouscrystalline phase boundary is determined.
文摘The fused cast alumina-zirconia-silica(AZS)refractory is an indispensable material of the glass melting furnace,because of its outstanding corrosion resistance and low pollution to glass production.The exudation is one important index to evaluate the performance of fused cast AZS refractory products.In order to study the effects of chemical composition and microstructure on the exudation of fused cast AZS refractory materials,three types of fused-cast AZS refractory bricks(AZS33#,AZS36#and AZS41#)were selected from several companies as the research object,and their composition,bulk density,apparent porosity,the value of exudation,static corrosion rate and microstructure were discussed.The results show that the chemical composition,especially the content of SiO2 and Na2O,and the distribution of zirconia would greatly affect the content and viscosity of glass phase,thus affecting the glass exudation.This work will provide technical reference for the development of low exudation AZS refractories.
基金Funded by National Key R&D Program of China(No.2017YFB0310102)。
文摘Hydration-heat-inhibiting materials(HIM)with polysaccharide as core material was prepared using microcapsule sustained-releasing technology,through a centrifugal spray granulation process after melting together.The preparation process parameters of HIM were selected by the semi-adiabatic temperature rise test of cement paste.TAM air microcalorimeter was used to investigate the regulation performance of HIM on the hydration of cement.The influence of HIM on the microstructure of cement was investigated by XRD,SEM,and TG-DSC.The results showed that the most suitable wall material for HIM was polyethylene wax,the optimum polyethylene wax/polysaccharide mass ratio was 1,and the most effective particle size was 0.16-0.30 mm.Polysaccharide coated by polyethylene wax released slowly,and the peak heat release rate of cement could be reduced by 55.2%after continuous regulaion.The regulation period continued to 120 h.HIM mainly decreased the C3S reaction rate,which resulted in a 39.2%peak value reduction of hydration heat release rate.However,HIM had little regulation on C3A.The hydration heat release process of cement-based materials can be designed by adjusting the dosage of HIM.
基金Project supported by Railroad Ministry Foundation (2004J041)
文摘The co-operation action mechanism and model of photon-ion catalysis synergy material composed of thallium and valency-variable rare earth elements and semiconductor oxide were proposed. The radiation catalysis reactions of water and oxygen assisted by the synergy material that could largely increase electron, free radical and negative ion products were discussed. The applications of photon-ion catalysis synergy material in areas of air cleaning material, antibacterial material , healthy material and energy resource material were suggested.
基金Funded by the National Natural Science Foundation of China(50978093 and 51072050)the National Key Research Program(973 Project)(No.2009CB6231001)
文摘Based on the principle of ENV 196-4 "Methods of testing cement - Part 4 Quantitative determination of constituents or Chinese Standard GB/12960-2007 Quantitative measurement of mineral admixtures in cement, methods were developed for quantitative determination of fly ash, slag and limestone powder in fresh cement pastes, mortars and concretes. Limestone powder was determined using thermal analysis method. The residue content of fly ash on an 80um sieve, and silt contents of aggregate were also considered during the quantitative determination of mineral composition of quaternary cementitious system. With the developed methods, the deviations between the measured and the actual mineral contents of the constituent in the eemantitious material in fresh cement paste, mortar and concrete, were within 3%.
文摘Large quantity of negative ions and hydrogen can be produced continuously by metal ions of tourmaline under the synergy action of light, water and oxygen. In order to promote this effect, the photon-ion-catalyzed rare earth functional synergy material was prepared to simulate the nature properties of tourmaline. Its safety was discussed and an interaction model proposed. The investigation results show that the cooperation of sunlight, valency-variable rare earth element thorium includes material and photo-catalyzed TiO_2 can increase the product of free radicals and negative ions. It is safety to use thorium included rare earth or rare earth waste with radiant dose smaller than 1Gy.
文摘The properties of rare earth materials activated diesel oil such as temperature, density and hydroxylic radical were discussed. Rare earth materials including minim thorium oxide powders which had radioactivity were mainly composed of rare earth waste-residue powders. Under the radiation catalysis of rare earth materials, molecules of diesel oil can be transformed into activated molecules, the collision frequency increases among molecules, and temperature raises a little higher than usual. When temperature is higher, the interaction force between molecules is lessened, distance between molecules is shortened. The volume is increased and the density is decreased. A large amounts electrons and negative ions are produced by rare earth materials, which leads to the signals of hydroxylic radical stronger that means rare earth materials can activate diesel oil and can improve the activity of diesel oil.
文摘It is difficult to ensure the manufacturing process of composites for the reason that there are complicated processes during curing process of composites. The cure cycle has a significant effect on the quality of the finished part. The traditional cure cycle based on empirical approach could not ensure the quality of cured products because of unstabilized performance, high cost of production and low efficiency. As complex intelligent manufacturing systems are developed increasingly in industry, the necessity of more user friendly operation system is becoming progressively importance for their utilization and market value. This paper introduces some of the recent technological advances in the intelligent manufacturing systems that will influence the design and development of relevant industry.
基金supported by the National Natural Science Foundation of China(No.22269010,52231007,12327804,T2321003,22088101)the Jiangxi Provincial Natural Science Foundation(No.20224BAB214021)+1 种基金the Major Research Program of Jingdezhen Ceramic Industry(No.2023ZDGG002)the Ministry of Science and Technology of China(973 Project No.2021YFA1200600).
文摘The exploration of novel multivariate heterostructures has emerged as a pivotal strategy for developing high-performance electromagnetic wave(EMW)absorption materials.However,the loss mechanism in traditional heterostructures is relatively simple,guided by empirical observations,and is not monotonous.In this work,we presented a novel semiconductor-semiconductor-metal heterostructure sys-tem,Mo-MXene/Mo-metal sulfides(metal=Sn,Fe,Mn,Co,Ni,Zn,and Cu),including semiconductor junctions and Mott-Schottky junctions.By skillfully combining these distinct functional components(Mo-MXene,MoS_(2),metal sulfides),we can engineer a multiple heterogeneous interface with superior absorption capabilities,broad effective absorption bandwidths,and ultrathin matching thickness.The successful establishment of semiconductor-semiconductor-metal heterostructures gives rise to a built-in electric field that intensifies electron transfer,as confirmed by density functional theory,which collaborates with multiple dielectric polarization mechanisms to substantially amplify EMW absorption.We detailed a successful synthesis of a series of Mo-MXene/Mo-metal sulfides featuring both semiconductor-semiconductor and semiconductor-metal interfaces.The achievements were most pronounced in Mo-MXene/Mo-Sn sulfide,which achieved remarkable reflection loss values of-70.6 dB at a matching thickness of only 1.885 mm.Radar cross-section calculations indicate that these MXene/Mo-metal sulfides have tremendous potential in practical military stealth technology.This work marks a departure from conventional component design limitations and presents a novel pathway for the creation of advanced MXene-based composites with potent EMW absorption capabilities.
基金Funded by the National Key Research and Development Program of China(No.2016YFC0209302)。
文摘Zirconium-based metal-organic framework UiO-66 was successfully prepared by solvothermal method,and UiO-66 was modified by adding regulators such as formic acid,acetic acid,and hydrochloric acid.The NH_(3)-SCR reactivity of the samples was evaluated by the denitration activity evaluation system,and the UiO-66 and the regulator-modified UiO-66 were characterized by XRD,SEM,BET,FTIR,TG,NH_(3)-TPD,etc.,the effects of regulator types on the structure and properties of UiO-66 were investigated.The experimental results show that,after adding the modifier,the morphology of UiO-66 changes from irregular quadrilateral with serious agglomeration to particles with regular crystal shape and good dispersibility,and the crystal morphology of the catalyst is improved.In addition,after adding the modifier,UiO-66 has a larger specific surface area and stronger surface acidity,which optimizes the catalytic performance of UiO-66.The catalytic performance test results of NH_(3)-SCR show that the low-temperature activity of UiO-66 is poor,and it only shows a certain catalytic activity at higher temperatures.The catalytic activity of UiO-66 was significantly improved after adding the regulator.Among them,the UiO-66-HCl modified with hydrochloric acid had the best catalytic activity,and the denitration rate reached 70%when the denitration temperature was 380℃.
文摘High entropy carbides (HECds) are multi-component carbides consisting of transition metal carbides.HECds are generally composed of five or more metal cations of the equal or near-equal substances,obtaining a single crystal structure.HECds have great potentials for future applications due to excellent mechanical,antioxidant and thermal properties.Due to their complex crystal structures and lattice distortion,computer simulations are widely used to efficiently associate the properties of HECds with the corresponding microstructures.In response to the development of HECds,this article provides an overview of the basic design,preparation process and properties of HECds.
基金Project supported by the National Key R&D Program of China (Grant Nos.2023YFC2206502 and 2021YFA1600703)the National Natural Science Foundation of China (Grant Nos.12175254 and 12227810)the Guangdong–Hong Kong–Macao Joint Laboratory for Neutron Scattering Science and Technology。
文摘As a non-destructive testing technology,neutron imaging plays an important role in various fields,including material science,nuclear engineering,and fundamental science.An imaging detector with a neutron-sensitive image intensifier has been developed and demonstrated to achieve good spatial resolution and timing resolution.However,the influence of the working voltage on the performance of the neutron-sensitive imaging intensifier has not been studied.To optimize the performance of the neutron-sensitive image intensifier at different voltages,experiments have been performed at the China Spallation Neutron Source(CSNS)neutron beamline.The change in the light yield and imaging quality with different voltages has been acquired.It is shown that the image quality benefits from the high gain of the microchannel plate(MCP)and the high accelerating electric field between the MCP and the screen.Increasing the accelerating electric field is more effective than increasing the gain of MCPs for the improvement of the imaging quality.Increasing the total gain of the MCP stack can be realized more effectively by improving the gain of the standard MCP than that of the n MCP.These results offer a development direction for image intensifiers in the future.
文摘Two kinds of pure calcium aluminate cement(CAC)prepared by the sintering method and the electric melting method,respectively were analyzed in terms of the particle size,XRD patterns and hydration characteristics;and their effects on the hydration heat and construction performance of the cement-based castables were discussed.It is found that(1)the electric fused CAC contains 50.67%CA and 44.89%CA_(2),while the sintered CAC contains 74.57%CA and 22.97%CA_(2);in addition,compared to the sintered CAC,the electric fused CAC contains more C_(3)A,C_(12)A_7,and a small amount of amorphous phase;(2)the electric fused CAC(d_(50)of 7.93μm)has much smaller particle size than the sintered CAC(d_(50)of 12.51μm);(3)in the early stage of hydration,the exothermic peak of the electric fused CAC appears earlier and the heat flow rate is higher than that of the sintered CAC;the dormant period of the sintered CAC is relatively short and the main exothermic peak appears earlier than that of the electric fused CAC;(4)for cement-based castables,there is no obvious exothermic peak in the early hydration stage,but the temperature of the castables slightly increases;among them,the initial hydration temperature of the electric fused CAC-based castable is higher;and the main exothermic peak of the sintered CAC-based castable appears later than that of the electric fused CAC-based castable;(5)the exothermic heating on-site occurrs earlier,which is related to the higher environmental temperature(about 30℃);the on-site electric fused CAC-based castable begins to show more cracks during the exothermic peak stage.