期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Study of the axial density/impedance gradient composite long rod hypervelocity penetration into a four-layer Q345 target
1
作者 Na Feng Kun Ma +5 位作者 Chunlin Chen Lixin Yin Mingrui Li Zhihua Nie Gang Zhou Chengwen Tan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第10期314-329,共16页
Based on the dynamic shock response of the material and structure,the hypervelocity impact processes and mechanisms of long composite rods with axial density/impedance gradients penetration into fourlayer targets were... Based on the dynamic shock response of the material and structure,the hypervelocity impact processes and mechanisms of long composite rods with axial density/impedance gradients penetration into fourlayer targets were studied through experiments and numerical simulation methods.The propagation law of the shock waves,together with the structural responses of the projectiles and targets,the formation and evolution of the fragment groups formed during the processes and their distributions were described.The damage of each target plate was quantitatively analysed by comparing the results of the experiment and numerical simulation.The results showed that the axial density/impedance gradient projectiles could decrease the impact pressure to a certain extent,and the degree of damage to the target plate decreased layer by layer when the head density/impedance of the projectile was high.When the head density/impedance of the projectile was low,the degree of target damage first increased layer by layer until the projectile was completely eroded and then it decreased.The results can provide a reference for the design and application of long rods with axial composite structure for velocities ranging from 6 to 10 Ma or greater. 展开更多
关键词 HYPERVELOCITY Density/impedance gradient Axial composite rod Penetration mechanism
在线阅读 下载PDF
Rigid elliptical cross-section ogive-nose projectiles penetration into concrete targets 被引量:11
2
作者 Xiang-hui Dai Ke-hui Wang +3 位作者 Ming-rui Li Jian Duan Bing-wen Qian Gang Zhou 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第3期800-811,共12页
The elliptical cross-section ogive-nose projectile(ECOP) has recently attracted attention because it is well suited to the flattened shape of earth-penetrating weapons. However, the penetration performance of ECOPs ha... The elliptical cross-section ogive-nose projectile(ECOP) has recently attracted attention because it is well suited to the flattened shape of earth-penetrating weapons. However, the penetration performance of ECOPs has not been completely understood. The objective of this study was to investigate the penetration performance of ECOPs into concrete targets using a theoretical method. A general geometric model of ECOPs was introduced, and closed-form penetration equations were derived according to the dynamic cavity-expansion theory. The model was validated by comparing the predicted penetration depths with test data, and the maximum deviation was 15.8%. The increment in the penetration depth of the ECOP was evaluated using the proposed model, and the effect of the majoreminor axis ratio on the increment was examined. Additionally, the mechanism of the penetration-depth increment was investigated with respect to the caliber radius head, axial stress, and resistance. 展开更多
关键词 Elliptical cross-section PROJECTILE PENETRATION Concrete target Dynamic cavity-expansion
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部