期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
STRONGLY NONLINEAR VARIATIONAL PARABOLIC EQUATIONS WITH p(x)-GROWTH
1
作者 Elhoussine AZROUL Badr LAHMI Ahmed YOUSSFI 《Acta Mathematica Scientia》 SCIE CSCD 2016年第5期1383-1404,共22页
We study the Dirichlet problem associated to strongly nonlinear parabolic equations involving p(x) structure in W;L;(Q). We prove the existence of weak solutions by applying Galerkin’s approximation method.
关键词 nonlinear parabolic equations EXISTENCE variable exponents weak solution
在线阅读 下载PDF
Quasilinear Degenerated Elliptic Systems with Weighted in Divergence Form with Weak Monotonicity with General Data
2
作者 Abdelkrim Barbara El Houcine Rami Elhoussine Azroul 《Applied Mathematics》 2021年第6期500-519,共20页
We consider, for a bounded open domain Ω in <em>R<sup>n</sup></em> and a function <em>u</em> : Ω → <em>R<sup>m</sup></em>, the quasilinear elliptic system... We consider, for a bounded open domain Ω in <em>R<sup>n</sup></em> and a function <em>u</em> : Ω → <em>R<sup>m</sup></em>, the quasilinear elliptic system: <img src="Edit_8a3d3105-dccb-405b-bbbc-2084b80b6def.bmp" alt="" /> (1). We generalize the system (<em>QES</em>)<sub>(<em>f</em>,<em>g</em>)</sub> in considering a right hand side depending on the jacobian matrix <em>Du</em>. Here, the star in (<em>QES</em>)<sub>(<em>f</em>,<em>g</em>)</sub> indicates that <em>f </em>may depend on <em>Du</em>. In the right hand side, <em>v</em> belongs to the dual space <em>W</em><sup>-1,<em>P</em>’</sup>(Ω, <span style="white-space:nowrap;"><em>ω</em></span><sup>*</sup>,<em> R<sup>m</sup></em>), <img src="Edit_d584a286-6ceb-420c-b91f-d67f3d06d289.bmp" alt="" />, <em>f </em>and <em>g</em> satisfy some standard continuity and growth conditions. We prove existence of a regularity, growth and coercivity conditions for <em>σ</em>, but with only very mild monotonicity assumptions. 展开更多
关键词 Quasilinear Elliptic Sobolev Spaces with Weight Young Measure Galerkin Scheme
在线阅读 下载PDF
Existence of <i>T</i>-<i>ν</i>-<i>p</i>(<i>x</i>)-Solution of a Nonhomogeneous Elliptic Problem with Right Hand Side Measure
3
作者 El Houcine Rami Abdelkrim Barbara El Houssine Azroul 《Journal of Applied Mathematics and Physics》 2021年第11期2717-2732,共16页
Using the theory of weighted Sobolev spaces with variable exponent and the <em>L</em><sup>1</sup>-version on Minty’s lemma, we investigate the existence of solutions for some nonhomogeneous Di... Using the theory of weighted Sobolev spaces with variable exponent and the <em>L</em><sup>1</sup>-version on Minty’s lemma, we investigate the existence of solutions for some nonhomogeneous Dirichlet problems generated by the Leray-Lions operator of divergence form, with right-hand side measure. Among the interest of this article is the given of a very important approach to ensure the existence of a weak solution of this type of problem and of generalization to a system with the minimum of conditions. 展开更多
关键词 Nonhomogeneous Elliptic Equations Dirichlet Problems Weighted Sobolev Spaces with Variable Exponent Minty’s Lemma T-ν-p(x)-Solutions
在线阅读 下载PDF
Entropy and Renormalized Solutions for Nonlinear Elliptic Problem Involving Variable Exponent and Measure Data 被引量:2
4
作者 Mohamed Badr BENBOUBKER Houssam CHRAYTEH +1 位作者 Mostafa EL MOUMNI Hassane HJIAJ 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2015年第1期151-169,共19页
We give an existence result of entropy and renormalized solutions for strongly nonlinear elliptic equations in the framework of Sobolev spaces with variable exponents of the type: -div (a(x, u,▽u)+φ(u))+g(... We give an existence result of entropy and renormalized solutions for strongly nonlinear elliptic equations in the framework of Sobolev spaces with variable exponents of the type: -div (a(x, u,▽u)+φ(u))+g(x, u,▽u)=μ, where the right-hand side belongs to L^1(Ω)+W^-1,p'(x)(Ω), -div(a(x, u,▽u)) is a Leray-Lions operator defined from W^-1,p'(x)(Ω) into its dual and φ∈C^0(R,R^N). The function g(x, u,▽u) is a non linear lower order term with natural growth with respect to |▽u| satisfying the sign condition, that is, g(x, u,▽u)u ≥ 0. 展开更多
关键词 Nonlinear elliptic problem Sobolev spaces variable exponent entropy solution renormalized solution measure data
原文传递
Existence of a Renormalised Solutions for a Class of Nonlinear Degenerated Parabolic Problems with L1 Data
5
作者 AKDIM y BENNOUNA j +1 位作者 MEKKOUR M. REDWANE H. 《Journal of Partial Differential Equations》 2013年第1期76-98,共23页
We study the existence of renormalized solutions for a class of nonlinear degenerated parabolic problem. The Carath6odory function satisfying the coercivity condition, the growth condition and only the large monotonic... We study the existence of renormalized solutions for a class of nonlinear degenerated parabolic problem. The Carath6odory function satisfying the coercivity condition, the growth condition and only the large monotonicity. The data belongs to LI(Q). 展开更多
关键词 Weighted Sobolev spaces TRUNCATIONS nonlinear doubling parabolic equation renor-malized solutions.
原文传递
Existence and Regularity of Solution for Strongly Nonlinear p(x)-Elliptic Equation with Measure Data
6
作者 HASSIB Moulay Cherif AKDIM Youssef +1 位作者 AZROUL Elhoussine BARBARA Abdelkrim 《Journal of Partial Differential Equations》 CSCD 2017年第1期31-46,共16页
The first part of this paper is devoted to study the existence of solution for nonlinear p(x) elliptic problem A(u) =u in Ω, u = 0 on Ω, with a right-hand side measure, where Ω is a bounded open set of RN, N ... The first part of this paper is devoted to study the existence of solution for nonlinear p(x) elliptic problem A(u) =u in Ω, u = 0 on Ω, with a right-hand side measure, where Ω is a bounded open set of RN, N ≥ 2 and A (u) = -div(a (x, u, u)) is a Leray-Lions operator defined from W 0 1,p(x) (Ω) in to its dual W-1,p'(x) (Ω). However the second part concerns the existence solution, of the following setting nonlinear elliptic problems A(u)+g(x,u, u) = u in Ω, u = 0 on Ω. We will give some regularity results for these solutions. 展开更多
关键词 Sobolev spaces with variable exponents strongly nonlinear p(x)-elliptic equations with measure data regularity.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部