Traditional space-coiled acoustic metamaterials have been widely used in the fields of low-frequency sound absorption and noise reduction.However,they have limitations in terms of low-frequency absorption bandwidth,an...Traditional space-coiled acoustic metamaterials have been widely used in the fields of low-frequency sound absorption and noise reduction.However,they have limitations in terms of low-frequency absorption bandwidth,and the weak coupling effect under complex coiled structures also limits their applications.In this work,we introduce the composite structure changing the characteristic impedance of acoustic metamaterials to enhance the coupling effect.Meanwhile,the perforated plates with inclined design instead of traditional partitions greatly improve the sound absorption.The model and method designed in this paper show significant innovation in enhancing low-frequency absorption performance.展开更多
Acoustic one-way manipulations have recently attracted significant attention due to the deep implications in many diverse fields such as biomedical imaging and treatment.However,the previous mechanisms of asymmetric m...Acoustic one-way manipulations have recently attracted significant attention due to the deep implications in many diverse fields such as biomedical imaging and treatment.However,the previous mechanisms of asymmetric manipulation of airborne sound need to use elaborate heavyweight structures and only work in certain frequency ranges.We propose a mechanism for designing an ultra-lightweight and optically transparent structure with asymmetric transmission property for normally incident plane waves.Instead of fabricating solids into complicated artificial structures with limited bandwidth and heavy asymmetric shape which allows the incident plane wave weight,we simply use xenon to fill a spatial region of to pass along one direction while reflecting the reversed wave regardless of frequency.We demonstrate both analytically and numerically its effectiveness of producing highly-asymmetric transmission within an ultra-broad band.Our design offers new possibility for the design of one-way devices and may have far-reaching impact on various scenarios such as noise control.展开更多
Modelling and biomedical applications of ultrasound contrast agent (UCA) microbubbles have attracted a great deal of attention. In this review, we summarize a series of researches done in our group, including (i) ...Modelling and biomedical applications of ultrasound contrast agent (UCA) microbubbles have attracted a great deal of attention. In this review, we summarize a series of researches done in our group, including (i) the development of an all-in-one solution of characterizing coated bubble parameters based on the light scattering technique and flow cytometry; (ii) a novel bubble dynamic model that takes into consideration both nonlinear shell elasticity and viscosity to eliminate the dependences of bubble shell parameters on bubble size; (iii) the evaluation of UCA inertial cavitation threshold and its relationship with shell parameters; and (iv) the investigations of transfection efficiency and the reduction of cytotoxicity in gene delivery facilitated by UCAs excited by ultrasound exposures.展开更多
As human‐machine interaction(HMI)in healthcare continues to evolve,the issue of trust in HMI in healthcare has been raised and explored.It is critical for the development and safety of healthcare that humans have pro...As human‐machine interaction(HMI)in healthcare continues to evolve,the issue of trust in HMI in healthcare has been raised and explored.It is critical for the development and safety of healthcare that humans have proper trust in medical machines.Intelligent machines that have applied machine learning(ML)technologies continue to penetrate deeper into the medical environment,which also places higher demands on intelligent healthcare.In order to make machines play a role in HMI in healthcare more effectively and make human‐machine cooperation more harmonious,the authors need to build good humanmachine trust(HMT)in healthcare.This article provides a systematic overview of the prominent research on ML and HMT in healthcare.In addition,this study explores and analyses ML and three important factors that influence HMT in healthcare,and then proposes a HMT model in healthcare.Finally,general trends are summarised and issues to consider addressing in future research on HMT in healthcare are identified.展开更多
Sonoporation,or the use of ultrasound in the presence of cavitation nuclei to induce plasma membrane perforation,is well considered as an emerging physical approach to facilitate the delivery of drugs and genes to liv...Sonoporation,or the use of ultrasound in the presence of cavitation nuclei to induce plasma membrane perforation,is well considered as an emerging physical approach to facilitate the delivery of drugs and genes to living cells.Nevertheless,this emerging drug delivery paradigm has not yet reached widespread clinical use,because the efficiency of sonoporation is often deemed to be mediocre due to the lack of detailed understanding of the pertinent scientific mechanisms.Here,we summarize the current observational evidence available on the notion of sonoporation,and we discuss the prevailing understanding of the physical and biological processes related to sonoporation.To facilitate systematic understanding,we also present how the extent of sonoporation is dependent on a multitude of factors related to acoustic excitation parameters(ultrasound frequency,pressure,cavitation dose,exposure time),microbubble parameters(size,concentration,bubble-to-cell distance,shell composition),and cellular properties(cell type,cell cycle,biochemical contents).By adopting a science-backed approach to the realization of sonoporation,ultrasound-mediated drug delivery can be more controllably achieved to viably enhance drug uptake into living cells with high sonoporation efficiency.This drug delivery approach,when coupled with concurrent advances in ultrasound imaging,has potential to become an effective therapeutic paradigm.展开更多
The cavitation bubble collapse near a cell can cause damage to the cell wall. This effect has received increasing attention in biomedical supersonics. Based on the lattice Boltzmann method, a multiple-relaxation-time ...The cavitation bubble collapse near a cell can cause damage to the cell wall. This effect has received increasing attention in biomedical supersonics. Based on the lattice Boltzmann method, a multiple-relaxation-time Shan–Chen model is built to study the cavitation bubble collapse. Using this model, the cavitation phenomena induced by density perturbation are simulated to obtain the coexistence densities at certain temperature and to demonstrate the Young–Laplace equation. Then, the cavitation bubble collapse near a curved rigid wall and the consequent high-speed jet towards the wall are simulated. Moreover, the influences of initial pressure difference and bubble-wall distance on the cavitation bubble collapse are investigated.展开更多
We propose a multi-layer structure for concealing an electromagnetic sensing system (a sensor is wrapped witha transparent protective layer),using single-negative (SNG) materials whose material parameters are complete...We propose a multi-layer structure for concealing an electromagnetic sensing system (a sensor is wrapped witha transparent protective layer),using single-negative (SNG) materials whose material parameters are completely independent of those of the host matrix as well as the concealed system.The numerical results show that only three different kinds of SNG materials are sufficient to yield the cloaking effect even in the presence of weak loss.This may significantly facilitate the experimental realization of a well-performing sensor-cloaking device.展开更多
Depression has become one of the most common mental illnesses in the world.For better prediction and diagnosis,methods of automatic depression recognition based on speech signal are constantly proposed and updated,wit...Depression has become one of the most common mental illnesses in the world.For better prediction and diagnosis,methods of automatic depression recognition based on speech signal are constantly proposed and updated,with a transition from the early traditional methods based on hand‐crafted features to the application of architectures of deep learning.This paper systematically and precisely outlines the most prominent and up‐to‐date research of automatic depression recognition by intelligent speech signal processing so far.Furthermore,methods for acoustic feature extraction,algorithms for classification and regression,as well as end to end deep models are investigated and analysed.Finally,general trends are summarised and key unresolved issues are identified to be considered in future studies of automatic speech depression recognition.展开更多
Unique topological states emerged in various topological insulators (TI) have been proved with great application value for robust wave regulation. In this work, we demonstrate the parity inversion related to the defin...Unique topological states emerged in various topological insulators (TI) have been proved with great application value for robust wave regulation. In this work, we demonstrate the parity inversion related to the definition of the primitive cell in one common lattice, and realize a type of symmetry-controlled edge states confined on the zigzag interfaces of the graphene-like sonic topological crystal. By simply sliding the selected 'layer' near the interface, the coupling of the pseudospin states induced by the multiple scattering for the C6v lattice results in the adjustment of the edge states. Based on the physics of the states, we experimentally propose a prototype of acoustic topological filter hosting multiple channels with independent adjustable edge states and realize the selective high transmission. Our work diversifies the prospects for the applications of the gapped edge states in the robust wave regulation, and proposes a frame to design new topological devices.展开更多
The suspension of electrodynamic loudspeakers includes a surround of the cone and a spider, and it is characterized by the mechanic stiffness in the lumped-parameter model. By solving the nonlinear differential equati...The suspension of electrodynamic loudspeakers includes a surround of the cone and a spider, and it is characterized by the mechanic stiffness in the lumped-parameter model. By solving the nonlinear differential equation of motion which considers the nonlinearity of suspension at low frequencies numerically and measuring different kinds of surrounds and spiders, the nonlinear behavior of suspension is theoretically and experimentally studied. Since the nonlinear stiffness of spiders and surrounds can be measured and fitted respectively before assembled into loudspeakers, which spider works best with which surround is studied. The performance of loudspeakers such as harmonic distortion based on the nonlinear parameters can be predicted.展开更多
Herein we extract all the frequency-dependent coupling-of-modes (COM) parameters, which will be used to the rapid simulation and optimal design of surface acoustic wave (SAW) devices. FEM/BEM is used to calculate ...Herein we extract all the frequency-dependent coupling-of-modes (COM) parameters, which will be used to the rapid simulation and optimal design of surface acoustic wave (SAW) devices. FEM/BEM is used to calculate the exact field distributions of forward and backward surface acoustic waves within a finite-length periodic grating at every frequency. The middle compo- nent of the grating, regarded as a periodic structure, is selected to be investigated which can satisfy the presupposition of the COM model. From these field distributions, the values of P-matrix elements of one cell are calculated. The COM parameters taken as functions of frequency are accurately obtained. Specifically, the frequency-dependent relationships of reflection coefficient and propagation velocity are obtained independently. Using the resultant COM parameters, a one-port resonator on the substrate of 128°YX-LiNbO3 is simulated and the admittance curve shows good agreement with the simulating results using FEM/BEM. These results verify the validity and accuracy of this method.展开更多
Photoelectrochemical(PEC) hydrogen production from water splitting is a green technology to convert solar energy into renewable hydrogen fuel. The construction of host/vip architecture in semiconductor photoanodes h...Photoelectrochemical(PEC) hydrogen production from water splitting is a green technology to convert solar energy into renewable hydrogen fuel. The construction of host/vip architecture in semiconductor photoanodes has been proven to be an effective strategy to improve solar-to-fuel conversion efficiency. In this study, WO_(3)@Fe_(2)O_(3) core-shell nanoarray heterojunction photoanodes are synthesized from the in-situ decomposition of WO_(3)@Prussian blue(WO_(3)@PB) and then used as host/vip photoanodes for photoelectrochemical water splitting, during which Fe_(2)O_(3) serves as vip material to absorb visible solar light and WO_(3) can act as host scaffolds to collect electrons at the contact. The prepared WO_(3)@Fe_(2)O_(3) shows the enhanced photocurrent density of 1.26 m A cm^(-2)(under visible light) at 1.23 V. vs RHE and a superior IPEC of 24.4% at 350 nm, which is higher than that of WO_(3)@PB and pure WO_(3)(0.43 m A/cm^(-2) and 16.3%, 0.18 m A/cm^(-2) and 11.5%) respectively, owing to the efficient light-harvesting from Fe_(2)O_(3) and the enhanced electron-hole pairs separation from the formation of type-Ⅱ heterojunctions, and the direct and ordered charge transport channels from the one-dimensional(1D) WO_(3) nanoarray nanostructures. Therefore, this work provides an alternative insight into the construction of sustainable and cost-effective photoanodes to enhance the efficiency of the solar-driven water splitting.展开更多
基金Project supported by the National Key Research and Development Program of China(Grant No.2022YFB3204303)the National Natural Science Foundation of China(Grant No.11934009)+1 种基金the Fundamental Research Funds for the Central Universities(Grant No.020414380195)the Foundation of State Key Laboratory of Ultrasound in Medicine and Engineering(Grant No.2022KFKT021)。
文摘Traditional space-coiled acoustic metamaterials have been widely used in the fields of low-frequency sound absorption and noise reduction.However,they have limitations in terms of low-frequency absorption bandwidth,and the weak coupling effect under complex coiled structures also limits their applications.In this work,we introduce the composite structure changing the characteristic impedance of acoustic metamaterials to enhance the coupling effect.Meanwhile,the perforated plates with inclined design instead of traditional partitions greatly improve the sound absorption.The model and method designed in this paper show significant innovation in enhancing low-frequency absorption performance.
基金Supported by the National Natural Science Foundation of China under Grant No 11634006
文摘Acoustic one-way manipulations have recently attracted significant attention due to the deep implications in many diverse fields such as biomedical imaging and treatment.However,the previous mechanisms of asymmetric manipulation of airborne sound need to use elaborate heavyweight structures and only work in certain frequency ranges.We propose a mechanism for designing an ultra-lightweight and optically transparent structure with asymmetric transmission property for normally incident plane waves.Instead of fabricating solids into complicated artificial structures with limited bandwidth and heavy asymmetric shape which allows the incident plane wave weight,we simply use xenon to fill a spatial region of to pass along one direction while reflecting the reversed wave regardless of frequency.We demonstrate both analytically and numerically its effectiveness of producing highly-asymmetric transmission within an ultra-broad band.Our design offers new possibility for the design of one-way devices and may have far-reaching impact on various scenarios such as noise control.
基金Projects supported by the National Natural Science Foundation of China(Grant Nos.81127901,81227004,11374155,11274170,11274176,11474001,11474161,11474166,and 11674173)the National High-Technology Research and Development Program,China(Grant No.2012AA022702)Qing Lan Project of Jiangsu Province,China
文摘Modelling and biomedical applications of ultrasound contrast agent (UCA) microbubbles have attracted a great deal of attention. In this review, we summarize a series of researches done in our group, including (i) the development of an all-in-one solution of characterizing coated bubble parameters based on the light scattering technique and flow cytometry; (ii) a novel bubble dynamic model that takes into consideration both nonlinear shell elasticity and viscosity to eliminate the dependences of bubble shell parameters on bubble size; (iii) the evaluation of UCA inertial cavitation threshold and its relationship with shell parameters; and (iv) the investigations of transfection efficiency and the reduction of cytotoxicity in gene delivery facilitated by UCAs excited by ultrasound exposures.
基金Qinglan Project of Jiangsu Province of China,Grant/Award Number:BK20180820National Natural Science Foundation of China,Grant/Award Numbers:12271255,61701243,71771125,72271126,12227808+2 种基金Major Projects of Natural Sciences of University in Jiangsu Province of China,Grant/Award Numbers:21KJA630001,22KJA630001Postgraduate Research and Practice Innovation Program of Jiangsu Province,Grant/Award Number:KYCX23_2343supported by the National Natural Science Foundation of China(no.72271126,12271255,61701243,71771125,12227808)。
文摘As human‐machine interaction(HMI)in healthcare continues to evolve,the issue of trust in HMI in healthcare has been raised and explored.It is critical for the development and safety of healthcare that humans have proper trust in medical machines.Intelligent machines that have applied machine learning(ML)technologies continue to penetrate deeper into the medical environment,which also places higher demands on intelligent healthcare.In order to make machines play a role in HMI in healthcare more effectively and make human‐machine cooperation more harmonious,the authors need to build good humanmachine trust(HMT)in healthcare.This article provides a systematic overview of the prominent research on ML and HMT in healthcare.In addition,this study explores and analyses ML and three important factors that influence HMT in healthcare,and then proposes a HMT model in healthcare.Finally,general trends are summarised and issues to consider addressing in future research on HMT in healthcare are identified.
基金supported in part by the Natural Sciences and Engineering Council of Canada (CREATE-528202-2019)Canadian Institutes of Health Research (PJT-153240)+1 种基金the Ministry of Science and Technology Key Research and Development Plan of China (No.2018YFC0115901)the National Natural Science Foundation of China (Grant No.11774168).
文摘Sonoporation,or the use of ultrasound in the presence of cavitation nuclei to induce plasma membrane perforation,is well considered as an emerging physical approach to facilitate the delivery of drugs and genes to living cells.Nevertheless,this emerging drug delivery paradigm has not yet reached widespread clinical use,because the efficiency of sonoporation is often deemed to be mediocre due to the lack of detailed understanding of the pertinent scientific mechanisms.Here,we summarize the current observational evidence available on the notion of sonoporation,and we discuss the prevailing understanding of the physical and biological processes related to sonoporation.To facilitate systematic understanding,we also present how the extent of sonoporation is dependent on a multitude of factors related to acoustic excitation parameters(ultrasound frequency,pressure,cavitation dose,exposure time),microbubble parameters(size,concentration,bubble-to-cell distance,shell composition),and cellular properties(cell type,cell cycle,biochemical contents).By adopting a science-backed approach to the realization of sonoporation,ultrasound-mediated drug delivery can be more controllably achieved to viably enhance drug uptake into living cells with high sonoporation efficiency.This drug delivery approach,when coupled with concurrent advances in ultrasound imaging,has potential to become an effective therapeutic paradigm.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11674173,81627802,11474161,11374155 and 11474001the Qing Lan Project
文摘The cavitation bubble collapse near a cell can cause damage to the cell wall. This effect has received increasing attention in biomedical supersonics. Based on the lattice Boltzmann method, a multiple-relaxation-time Shan–Chen model is built to study the cavitation bubble collapse. Using this model, the cavitation phenomena induced by density perturbation are simulated to obtain the coexistence densities at certain temperature and to demonstrate the Young–Laplace equation. Then, the cavitation bubble collapse near a curved rigid wall and the consequent high-speed jet towards the wall are simulated. Moreover, the influences of initial pressure difference and bubble-wall distance on the cavitation bubble collapse are investigated.
基金Supported by the National Basic Research Program of China under Grant No 2011CB707900the National Natural Science Foundation of China under Grant Nos 10804050,10874086,10834009 and 10904068.
文摘We propose a multi-layer structure for concealing an electromagnetic sensing system (a sensor is wrapped witha transparent protective layer),using single-negative (SNG) materials whose material parameters are completely independent of those of the host matrix as well as the concealed system.The numerical results show that only three different kinds of SNG materials are sufficient to yield the cloaking effect even in the presence of weak loss.This may significantly facilitate the experimental realization of a well-performing sensor-cloaking device.
基金supported by the National Natural Science Foundation of China(NSFC,no.61701243,71771125)the Major Project of Natural Science Foundation of Jiangsu Education Department(no.19KJA180002).
文摘Depression has become one of the most common mental illnesses in the world.For better prediction and diagnosis,methods of automatic depression recognition based on speech signal are constantly proposed and updated,with a transition from the early traditional methods based on hand‐crafted features to the application of architectures of deep learning.This paper systematically and precisely outlines the most prominent and up‐to‐date research of automatic depression recognition by intelligent speech signal processing so far.Furthermore,methods for acoustic feature extraction,algorithms for classification and regression,as well as end to end deep models are investigated and analysed.Finally,general trends are summarised and key unresolved issues are identified to be considered in future studies of automatic speech depression recognition.
基金Project supported by the National Key R&D Program of China(Grant No.2017YFA0303700)the National Natural Science Foundation of China(Grant Nos.11634006,11934009,and 11690030)+2 种基金the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20191245)the Fundamental Research Funds for the Central Universities,China(Grant No.020414380131)the State Key Laboratory of Acoustics,Chinese Academy of Sciences.
文摘Unique topological states emerged in various topological insulators (TI) have been proved with great application value for robust wave regulation. In this work, we demonstrate the parity inversion related to the definition of the primitive cell in one common lattice, and realize a type of symmetry-controlled edge states confined on the zigzag interfaces of the graphene-like sonic topological crystal. By simply sliding the selected 'layer' near the interface, the coupling of the pseudospin states induced by the multiple scattering for the C6v lattice results in the adjustment of the edge states. Based on the physics of the states, we experimentally propose a prototype of acoustic topological filter hosting multiple channels with independent adjustable edge states and realize the selective high transmission. Our work diversifies the prospects for the applications of the gapped edge states in the robust wave regulation, and proposes a frame to design new topological devices.
基金supported by the National Natural Science Foundation of China(Grant No. 11274172)
文摘The suspension of electrodynamic loudspeakers includes a surround of the cone and a spider, and it is characterized by the mechanic stiffness in the lumped-parameter model. By solving the nonlinear differential equation of motion which considers the nonlinearity of suspension at low frequencies numerically and measuring different kinds of surrounds and spiders, the nonlinear behavior of suspension is theoretically and experimentally studied. Since the nonlinear stiffness of spiders and surrounds can be measured and fitted respectively before assembled into loudspeakers, which spider works best with which surround is studied. The performance of loudspeakers such as harmonic distortion based on the nonlinear parameters can be predicted.
基金supported by the National Natural Science Foundation of China(Grant Nos. 10774073 and 11174143)
文摘Herein we extract all the frequency-dependent coupling-of-modes (COM) parameters, which will be used to the rapid simulation and optimal design of surface acoustic wave (SAW) devices. FEM/BEM is used to calculate the exact field distributions of forward and backward surface acoustic waves within a finite-length periodic grating at every frequency. The middle compo- nent of the grating, regarded as a periodic structure, is selected to be investigated which can satisfy the presupposition of the COM model. From these field distributions, the values of P-matrix elements of one cell are calculated. The COM parameters taken as functions of frequency are accurately obtained. Specifically, the frequency-dependent relationships of reflection coefficient and propagation velocity are obtained independently. Using the resultant COM parameters, a one-port resonator on the substrate of 128°YX-LiNbO3 is simulated and the admittance curve shows good agreement with the simulating results using FEM/BEM. These results verify the validity and accuracy of this method.
基金supported by the Natural Science Foundation of Anhui Province (No. 2008085ME132)Talent Project of Anhui Province (Z175050020001)+3 种基金the Key Project of Anhui Provincial Department of Education (No. KJ2019A0157)the Program from Guangdong Introducing Innovative and Enterpreneurial Teams (Nos. 2019ZT08L101 and RCTDPT-2020-001)the Shenzhen Natural Science Foundation (No. GXWD20201231105722002-20200824163747001)Shenzhen Key Laboratory of Ecomaterials and Renewable Energy (No. ZDSYS20200922160 400001)。
文摘Photoelectrochemical(PEC) hydrogen production from water splitting is a green technology to convert solar energy into renewable hydrogen fuel. The construction of host/vip architecture in semiconductor photoanodes has been proven to be an effective strategy to improve solar-to-fuel conversion efficiency. In this study, WO_(3)@Fe_(2)O_(3) core-shell nanoarray heterojunction photoanodes are synthesized from the in-situ decomposition of WO_(3)@Prussian blue(WO_(3)@PB) and then used as host/vip photoanodes for photoelectrochemical water splitting, during which Fe_(2)O_(3) serves as vip material to absorb visible solar light and WO_(3) can act as host scaffolds to collect electrons at the contact. The prepared WO_(3)@Fe_(2)O_(3) shows the enhanced photocurrent density of 1.26 m A cm^(-2)(under visible light) at 1.23 V. vs RHE and a superior IPEC of 24.4% at 350 nm, which is higher than that of WO_(3)@PB and pure WO_(3)(0.43 m A/cm^(-2) and 16.3%, 0.18 m A/cm^(-2) and 11.5%) respectively, owing to the efficient light-harvesting from Fe_(2)O_(3) and the enhanced electron-hole pairs separation from the formation of type-Ⅱ heterojunctions, and the direct and ordered charge transport channels from the one-dimensional(1D) WO_(3) nanoarray nanostructures. Therefore, this work provides an alternative insight into the construction of sustainable and cost-effective photoanodes to enhance the efficiency of the solar-driven water splitting.