期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Effect of bubble morphology and behavior on power consumption in non-Newtonian fluids’aeration process 被引量:1
1
作者 Xiemin Liu Jing Wan +5 位作者 Jinnan Sun Lin Zhang Feng Zhang Zhibing Zhang Xinyao Li Zheng Zhou 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期243-254,共12页
Due to a prolonged operation time and low mass transfer efficiency, the primary challenge in the aeration process of non-Newtonian fluids is the high energy consumption, which is closely related to the form and rate o... Due to a prolonged operation time and low mass transfer efficiency, the primary challenge in the aeration process of non-Newtonian fluids is the high energy consumption, which is closely related to the form and rate of impeller, ventilation, rheological properties and bubble morphology in the reactor. In this perspective, through optimal computational fluid dynamics models and experiments, the relationship between power consumption, volumetric mass transfer rate(kLa) and initial bubble size(d0) was constructed to establish an efficient operation mode for the aeration process of non-Newtonian fluids. It was found that reducing the d0could significantly increase the oxygen mass transfer rate, resulting in an obvious decrease in the ventilation volume and impeller speed. When d0was regulated within 2-5 mm,an optimal kLa could be achieved, and 21% of power consumption could be saved, compared to the case of bubbles with a diameter of 10 mm. 展开更多
关键词 Non-Newtonian fluids aeration process Power consumption Volumetric mass transfer rate Bubble size
在线阅读 下载PDF
Micro-interface enhanced mass transfer sodium carbonate absorption carbon dioxide reaction 被引量:1
2
作者 Hu Shen Yingyu Xu +4 位作者 Jigang An Bowen Jiang Jinnan Sun Guoqiang Yang Zhibing Zhang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第12期208-223,共16页
Micro-interface intensified reactor(MIR)can be applied in series/parallel in the absorption of CO_(2)in industrial gases by Na_(2)CO_(3)due to the ability to produce large numbers of stable microbubbles.This work focu... Micro-interface intensified reactor(MIR)can be applied in series/parallel in the absorption of CO_(2)in industrial gases by Na_(2)CO_(3)due to the ability to produce large numbers of stable microbubbles.This work focuses on the variation pattern of mass transfer characteristics parameters of the reaction gas in Na_(2)CO_(3) solution under the influence of different solution properties and operating parameters in the reaction of CO_(2)absorption by Na2CO3.The mass transfer characteristics parameters include bubble Sauter mean diameter,gas holdup,interfacial area,liquid side mass transfer coefficient,and liquid side volume mass transfer coefficient kLa.The solution properties and operating parameters include Na2CO3 concentration(0.05–2.0 mol·L^(-1)),superficial gas velocity(0.00221–0.01989 m·s^(-1)),superficial liquid velocity(0.00332–0.02984 m·s^(-1)),and ionic strength(1.42456–1.59588 mol·kg^(-1)).And volumetric mass transfer coeffi-cients kLa and superficial reaction rates r of the MIR and the bubble column reactor are compared in the reaction of sodium carbonate absorption of carbon dioxide,and the former shows a greater improvement under different solution properties and operating parameters.The enhanced role of MIR in mass transfer in non-homogeneous reactions is verified and the feasibility of industrial practical applications of MIR is demonstrated. 展开更多
关键词 Carbon dioxide ABSORPTION MICROBUBBLE Bubble Sauter mean diameter Interfacial area Mass transfer
在线阅读 下载PDF
Insight into the metal-free electrocatalysis of heteroatom-doped carbon nanocages in competitive CO_(2) reduction and H_(2) evolution
3
作者 Liu Jiao Chenghui Mao +9 位作者 Biao Feng Fengfei Xu Shuo Li Jun Zhong Mingqi Xia Ruonan Cui Xizhang Wang Lijun Yang Qiang Wu Zheng Hu 《Nano Research》 2025年第2期255-262,共8页
Metal-free carbon-based catalysts exhibit diverse electrocatalytic performances in CO_(2) reduction reaction(CO_(2)RR),but the attributions and contributions of active sites are still confusing to date.Herein,the hier... Metal-free carbon-based catalysts exhibit diverse electrocatalytic performances in CO_(2) reduction reaction(CO_(2)RR),but the attributions and contributions of active sites are still confusing to date.Herein,the hierarchical carbon nanocages(hCNC)doped with different heteroatoms(B,N,P,S)are prepared to examine the impact of dopants on the competitive CO_(2)RR and hydrogen evolution reaction(HER).The hCNC and P-doped hCNC show little CO_(2)RR activity,B-and S-doped hCNC show weak CO_(2)RR activity,while N-doped hCNC presents high CO_(2)RR activity.The CO Faradaic efficiency(FECO)of N-containing hCNC increases almost linearly with increasing the N content,even with the co-existing B or P.S and SN-doped hCNC more facilitate the HER.16 doping configurations are constructed,and up to 53 sites are examined CO_(2) H2O H2 CO*H*COOH*CO for the electrochemical activities with a constant potential modelling method.The pyridinic-N(N^(*))is the best active site for CO_(2)RR to CO,while CBO_(2)H_(2)-1(αC^(*)),CBO_(2)H_(2)-2(γC^(*)),NO-1(βC^(*)),PO_(2)H-3(αC^(*))and SO_(3)H-3(δC^(*))are active for HER.The optimized FECO achieves 83.6%for N-doped hCNC with 9.54 at.%nitrogen,and S-doped hCNC reaches ca.30 mA·cm^(-2) current density for HER.This study unveils the structure-performance correlation of heteroatom-doped hCNC,which is conducive to the rational design of advanced metal-free carbon-based catalysts. 展开更多
关键词 heteroatom-doping metal-free carbon-based catalyst CO_(2)reduction reaction hydrogen evolution reaction active sites density functional theory(DFT)
原文传递
Self-supported NiFe-LDH nanosheets on NiMo-based nanorods as high-performance bifunctional electrocatalysts for overall water splitting at industrial-level current densities
4
作者 Yan Zhang Biao Feng +9 位作者 MingLei Yan Zhen Shen Yiqun Chen Jingyi Tian Fengfei Xu Guanghai Chen Xizhang Wang Lijun Yang Qiang Wu Zheng Hu 《Nano Research》 SCIE EI CSCD 2024年第5期3769-3776,共8页
Efficient,durable and economic electrocatalysts are crucial for commercializing water electrolysis technology.Herein,we report an advanced bifunctional electrocatalyst for alkaline water splitting by growing NiFe-laye... Efficient,durable and economic electrocatalysts are crucial for commercializing water electrolysis technology.Herein,we report an advanced bifunctional electrocatalyst for alkaline water splitting by growing NiFe-layered double hydroxide(NiFe-LDH)nanosheet arrays on the conductive NiMo-based nanorods deposited on Ni foam to form a three-dimensional(3D)architecture,which exhibits exceptional performances for both hydrogen evolution reaction(HER)and oxygen evolution reaction(OER).In overall water splitting,only the low operation voltages of 1.45/1.61 V are required to reach the current density of 10/500 mA·cm^(-2),and the continuous water splitting at an industrial-level current density of 500 mA·cm^(-2) shows a negligible degradation(1.8%)of the cell voltage over 1000 h.The outstanding performance is ascribed to the synergism of the HER-active NiMo-based nanorods and the OER-active NiFe-LDH nanosheet arrays of the hybridized 3D architecture.Specifically,the dense NiFe-LDH nanosheet arrays enhance the local pH on cathode by retarding OH-diffusion and enlarge the electrochemically active surface area on anode,while the conductive NiMo-based nanorods on Ni foam much decrease the charge-transfer resistances of both electrodes.This study provides an efficient strategy to explore advanced bifunctional electrocatalysts for overall water splitting by rationally hybridizing HER-and OER-active components. 展开更多
关键词 alkaline water splitting bifunctional electrocatalysts layered double hydroxides high durability industrial current densities
原文传递
Recent advances in anode materials for potassium-ion batteries:A review 被引量:12
5
作者 Lianbo Ma Yaohui Lv +5 位作者 Junxiong Wu Chuan Xia Qi Kang Yizhou Zhang Hanfeng Liang Zhong Jin 《Nano Research》 SCIE EI CSCD 2021年第12期4442-4470,共29页
Potassium-ion batteries(PIBs)are appealing alternatives to conventional lithium-ion batteries(LIBs)because of their wide potential window,fast ionic conductivity in the electrolyte,and reduced cost.However,PIBs suffer... Potassium-ion batteries(PIBs)are appealing alternatives to conventional lithium-ion batteries(LIBs)because of their wide potential window,fast ionic conductivity in the electrolyte,and reduced cost.However,PIBs suffer from sluggish K+reaction kinetics in electrode materials,large volume expansion of electroactive materials,and the unstable solid electrolyte interphase.Various strategies,especially in terms of electrode design,have been proposed to address these issues.In this review,the recent progress on advanced anode materials of PIBs is systematically discussed,ranging from the design principles,and nanoscale fabrication and engineering to the structure-performance relationship.Finally,the remaining limitations,potential solutions,and possible research directions for the development of PIBs towards practical applications are presented.This review will provide new insights into the lab development and real-world applications of PIBs. 展开更多
关键词 potassium-ion batteries anode materials nanoscale engineering electrode design
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部