For each real number x∈(0,1),let[a_(1)(x),a_(2)(x),…,a_n(x),…]denote its continued fraction expansion.We study the convergence exponent defined byτ(x)=inf{s≥0:∞∑n=1(a_(n)(x)a_(n+1)(x))^(-s)<∞},which reflect...For each real number x∈(0,1),let[a_(1)(x),a_(2)(x),…,a_n(x),…]denote its continued fraction expansion.We study the convergence exponent defined byτ(x)=inf{s≥0:∞∑n=1(a_(n)(x)a_(n+1)(x))^(-s)<∞},which reflects the growth rate of the product of two consecutive partial quotients.As a main result,the Hausdorff dimensions of the level sets ofτ(x)are determined.展开更多
Let x∈(0,1)be a real number with continued fraction expansion[a_(1)(x),a_(2)(x),a_(3)(x),⋯].This paper is concerned with the multifractal spectrum of the convergence exponent of{a_(n)(x)}_(n≥1) defined by τ(x):=in...Let x∈(0,1)be a real number with continued fraction expansion[a_(1)(x),a_(2)(x),a_(3)(x),⋯].This paper is concerned with the multifractal spectrum of the convergence exponent of{a_(n)(x)}_(n≥1) defined by τ(x):=inf{s≥0:∑n≥1an^(-s)(x)<∞}.展开更多
The purpose of this work is to implement a discontinuous Galerkin(DG)method with a one-sided flux for a singularly perturbed Volterra integro-differential equation(VIDE)with a smooth kernel.First,the regularity proper...The purpose of this work is to implement a discontinuous Galerkin(DG)method with a one-sided flux for a singularly perturbed Volterra integro-differential equation(VIDE)with a smooth kernel.First,the regularity property and a decomposition of the exact solution of the singularly perturbed VIDE with the initial condition are provided.Then the existence and uniqueness of the DG solution are proven.Then some appropriate projection-type interpolation operators and their corresponding approximation properties are established.Based on the decomposition of the exact solution and the approximation properties of the projection type interpolants,the DG method achieves the uniform convergence in the L2 norm with respect to the singular perturbation parameter e when the space of polynomials with degree p is used.A numerical experiment validates the theoretical results.Furthermore,an ultra-convergence order 2p+1 at the nodes for the one-sided flux,uniform with respect to the singular perturbation parameter e,is observed numerically.展开更多
Ordinal online schedule for jobs with similar sizes in on two parallel machines system is considered. Firstly it is proved that the worst case performance ratio of the existing algorithm P2 cannot be improved even if ...Ordinal online schedule for jobs with similar sizes in on two parallel machines system is considered. Firstly it is proved that the worst case performance ratio of the existing algorithm P2 cannot be improved even if the job processing times are known in for any . Then a better algorithm named S is developed and its worst case performance ratio is given for? .展开更多
The study of the hydrodynamic limit of the Boltzmann equation with physical boundary is a challenging problem due to the appearance of the viscous and Knudsen boundary layers.In this paper,the hydrodynamic limit from ...The study of the hydrodynamic limit of the Boltzmann equation with physical boundary is a challenging problem due to the appearance of the viscous and Knudsen boundary layers.In this paper,the hydrodynamic limit from the Boltzmann equation with the specular reflection boundary condition to the incompressible Euler equations in a channel is investigated.Based on the multi-scaled Hilbert expansion,the equations with boundary conditions and compatibility conditions for interior solutions,and viscous and Knudsen boundary layers are derived under different scaling,respectively.Then,some uniform estimates for the interior solutions,and viscous and Knudsen boundary layers are established.With the help of the L^(2)-L^(∞) framework and the uniform estimates obtained above,the solutions to the Boltzmann equation are constructed by the truncated Hilbert expansion with multiscales,and hence the hydrodynamic limit in the incompressible Euler level is justified.展开更多
The aim of this paper is to develop a fast multigrid solver for interpolation-free finite volume (FV) discretization of anisotropic elliptic interface problems on general bounded domains that can be described as a uni...The aim of this paper is to develop a fast multigrid solver for interpolation-free finite volume (FV) discretization of anisotropic elliptic interface problems on general bounded domains that can be described as a union of blocks. We assume that the curved interface falls exactly on the boundaries of blocks. The transfinite interpolation technique is applied to generate block-wise distorted quadrilateral meshes, which can resolve the interface with fine geometric details. By an extensive study of the harmonic average point method, an interpolation-free nine-point FV scheme is then derived on such multi-block grids for anisotropic elliptic interface problems with non-homogeneous jump conditions. Moreover, for the resulting linear algebraic systems from cell-centered FV discretization, a high-order prolongation operator based fast cascadic multigrid solver is developed and shown to be robust with respect to both the problem size and the jump of the diffusion coefficients. Various non-trivial examples including four interface problems and an elliptic problem in complex domain without interface, all with tens of millions of unknowns, are provided to show that the proposed multigrid solver is dozens of times faster than the classical algebraic multigrid method as implemented in the code AMG1R5 by Stüben.展开更多
This paper is concerned with two aspects of the fractional Navier-Stokes equation. First, we establish the local L^(2)theory of the hypo-dissipative Navier-Stokes system. More precisely, the existence of local-in-time...This paper is concerned with two aspects of the fractional Navier-Stokes equation. First, we establish the local L^(2)theory of the hypo-dissipative Navier-Stokes system. More precisely, the existence of local-in-time as well as global-in-time local energy weak solutions to the hypo-dissipative Navier-Stokes system is proved.In particular, in order to construct a pressure with an explicit representation, some technical innovations are required due to the lack of known results on the local regularity of the non-local Stokes operator. Secondly, as an important application to the local L^(2)theory, we give a second construction of large self-similar solutions of the hypo-dissipative Navier-Stokes system along with the Leray-Schauder degree theory.展开更多
The local minimax method(LMM)proposed by Li and Zhou(2001,2002)is an efficient method to solve nonlinear elliptic partial differential equations(PDEs)with certain variational structures for multiple solutions.The stee...The local minimax method(LMM)proposed by Li and Zhou(2001,2002)is an efficient method to solve nonlinear elliptic partial differential equations(PDEs)with certain variational structures for multiple solutions.The steepest descent direction and the Armijo-type step-size search rules are adopted in Li and Zhou(2002)and play a significant role in the performance and convergence analysis of traditional LMMs.In this paper,a new algorithm framework of the LMMs is established based on general descent directions and two normalized(strong)Wolfe-Powell-type step-size search rules.The corresponding algorithm framework,named the normalized Wolfe-Powell-type LMM(NWP-LMM),is introduced with its feasibility and global convergence rigorously justified for general descent directions.As a special case,the global convergence of the NWP-LMM combined with the preconditioned steepest descent(PSD)directions is also verified.Consequently,it extends the framework of traditional LMMs.In addition,conjugate-gradient-type(CG-type)descent directions are utilized to speed up the NWP-LMM.Finally,extensive numerical results for several semilinear elliptic PDEs are reported to profile their multiple unstable solutions and compared with different algorithms in the LMM’s family to indicate the effectiveness and robustness of our algorithms.In practice,the NWP-LMM combined with the CG-type direction performs much better than its known LMM companions.展开更多
Let M=ρ^(-1)I∈Mn(R)be an expanding matrix with 0<|ρ|<1 and D■Z^(n)be a finite digit set with O∈D and Z(mD)■Z(mD)■Z(mD)∪{0}■m^(-1)z^(n)for a prime m,where Z(mD):=(Ede emi(a)=O),LetμM.D be theassociateds...Let M=ρ^(-1)I∈Mn(R)be an expanding matrix with 0<|ρ|<1 and D■Z^(n)be a finite digit set with O∈D and Z(mD)■Z(mD)■Z(mD)∪{0}■m^(-1)z^(n)for a prime m,where Z(mD):=(Ede emi(a)=O),LetμM.D be theassociatedsel-simiar measure defined by M.DO)-ZaeDμM,D(M()-d).In this paper,the necessary and sufficient conditions for L2(μM,D)to admit infinite orthogonal exponential functions are given.Moreover,by using the order theory of polynomial,we estimate the number of orthogonal exponential functions for all cases that L^(2)(μM,D)does not admit infinite orthogonal exponential functions.展开更多
It was shown recently that the heart of a twin cotorsion pair on an extriangulated category is semi-abelian.In this article,we consider a special class of hearts of twin cotorsion pairs induced by d-cluster tilting su...It was shown recently that the heart of a twin cotorsion pair on an extriangulated category is semi-abelian.In this article,we consider a special class of hearts of twin cotorsion pairs induced by d-cluster tilting subcategories in extriangulated categories.We give a necessary and sufficient condition for such hearts to be abelian.In particular,we can also see that such hearts are hereditary.As an application,this generalizes the work by Liu in the exact case,thereby providing new insights into the triangulated case.展开更多
In this paper, we consider online scheduling for jobs with arbitrary release times on the parallel uniform machine system. An algorithm with competitive ratio of 7.4641 is addressed, which is better than the best exis...In this paper, we consider online scheduling for jobs with arbitrary release times on the parallel uniform machine system. An algorithm with competitive ratio of 7.4641 is addressed, which is better than the best existing result of 12.展开更多
In this paper,by designing a normalized nonmonotone search strategy with the BarzilaiBorwein-type step-size,a novel local minimax method(LMM),which is a globally convergent iterative method,is proposed and analyzed to...In this paper,by designing a normalized nonmonotone search strategy with the BarzilaiBorwein-type step-size,a novel local minimax method(LMM),which is a globally convergent iterative method,is proposed and analyzed to find multiple(unstable)saddle points of nonconvex functionals in Hilbert spaces.Compared to traditional LMMs with monotone search strategies,this approach,which does not require strict decrease of the objective functional value at each iterative step,is observed to converge faster with less computations.Firstly,based on a normalized iterative scheme coupled with a local peak selection that pulls the iterative point back onto the solution submanifold,by generalizing the Zhang-Hager(ZH)search strategy in the optimization theory to the LMM framework,a kind of normalized ZH-type nonmonotone step-size search strategy is introduced,and then a novel nonmonotone LMM is constructed.Its feasibility and global convergence results are rigorously carried out under the relaxation of the monotonicity for the functional at the iterative sequences.Secondly,in order to speed up the convergence of the nonmonotone LMM,a globally convergent Barzilai-Borwein-type LMM(GBBLMM)is presented by explicitly constructing the Barzilai-Borwein-type step-size as a trial step-size of the normalized ZH-type nonmonotone step-size search strategy in each iteration.Finally,the GBBLMM algorithm is implemented to find multiple unstable solutions of two classes of semilinear elliptic boundary value problems with variational structures:one is the semilinear elliptic equations with the homogeneous Dirichlet boundary condition and another is the linear elliptic equations with semilinear Neumann boundary conditions.Extensive numerical results indicate that our approach is very effective and speeds up the LMMs significantly.展开更多
基金supported by the Scientific Research Fund of Hunan Provincial Education Department(21B0070)the Natural Science Foundation of Jiangsu Province(BK20231452)+1 种基金the Fundamental Research Funds for the Central Universities(30922010809)the National Natural Science Foundation of China(11801591,11971195,12071171,12171107,12201207,12371072)。
文摘For each real number x∈(0,1),let[a_(1)(x),a_(2)(x),…,a_n(x),…]denote its continued fraction expansion.We study the convergence exponent defined byτ(x)=inf{s≥0:∞∑n=1(a_(n)(x)a_(n+1)(x))^(-s)<∞},which reflects the growth rate of the product of two consecutive partial quotients.As a main result,the Hausdorff dimensions of the level sets ofτ(x)are determined.
基金This research was supported by National Natural Science Foundation of China(11771153,11801591,11971195,12171107)Guangdong Natural Science Foundation(2018B0303110005)+1 种基金Guangdong Basic and Applied Basic Research Foundation(2021A1515010056)Kunkun Song would like to thank China Scholarship Council(CSC)for financial support(201806270091).
文摘Let x∈(0,1)be a real number with continued fraction expansion[a_(1)(x),a_(2)(x),a_(3)(x),⋯].This paper is concerned with the multifractal spectrum of the convergence exponent of{a_(n)(x)}_(n≥1) defined by τ(x):=inf{s≥0:∑n≥1an^(-s)(x)<∞}.
基金supported by the National Natural Science Foundation of China(12001189)supported by the National Natural Science Foundation of China(11171104,12171148)。
文摘The purpose of this work is to implement a discontinuous Galerkin(DG)method with a one-sided flux for a singularly perturbed Volterra integro-differential equation(VIDE)with a smooth kernel.First,the regularity property and a decomposition of the exact solution of the singularly perturbed VIDE with the initial condition are provided.Then the existence and uniqueness of the DG solution are proven.Then some appropriate projection-type interpolation operators and their corresponding approximation properties are established.Based on the decomposition of the exact solution and the approximation properties of the projection type interpolants,the DG method achieves the uniform convergence in the L2 norm with respect to the singular perturbation parameter e when the space of polynomials with degree p is used.A numerical experiment validates the theoretical results.Furthermore,an ultra-convergence order 2p+1 at the nodes for the one-sided flux,uniform with respect to the singular perturbation parameter e,is observed numerically.
文摘Ordinal online schedule for jobs with similar sizes in on two parallel machines system is considered. Firstly it is proved that the worst case performance ratio of the existing algorithm P2 cannot be improved even if the job processing times are known in for any . Then a better algorithm named S is developed and its worst case performance ratio is given for? .
基金supported by National Key R&D Program of China(Grant No.2021YFA1000800)National Natural Science Foundation of China(Grant No.12288201)+3 种基金supported by National Natural Science Foundation of China(Grant Nos.12022114 and 12288201)CAS Project for Young Scientists in Basic Research(Grant No.YSBR-031)Youth Innovation Promotion Association of CAS(Grant No.2019002)supported by National Natural Science Foundation of China(Grant No.12201209)。
文摘The study of the hydrodynamic limit of the Boltzmann equation with physical boundary is a challenging problem due to the appearance of the viscous and Knudsen boundary layers.In this paper,the hydrodynamic limit from the Boltzmann equation with the specular reflection boundary condition to the incompressible Euler equations in a channel is investigated.Based on the multi-scaled Hilbert expansion,the equations with boundary conditions and compatibility conditions for interior solutions,and viscous and Knudsen boundary layers are derived under different scaling,respectively.Then,some uniform estimates for the interior solutions,and viscous and Knudsen boundary layers are established.With the help of the L^(2)-L^(∞) framework and the uniform estimates obtained above,the solutions to the Boltzmann equation are constructed by the truncated Hilbert expansion with multiscales,and hence the hydrodynamic limit in the incompressible Euler level is justified.
基金supported by the National Natural Science Foundation of China(Grant No.42274101)X.X.Wu was supported by the Fundamental Research Funds for the Central Universities of Central South University(Grant No.2020zzts354)+2 种基金H.L.Hu was supported by the National Natural Science Foundation of China(Grant No.12071128)by the Natural Science Foundation of Hunan Province(Grant No.2021JJ30434)Z.L.Li was supported by a Simons Grant No.633724.
文摘The aim of this paper is to develop a fast multigrid solver for interpolation-free finite volume (FV) discretization of anisotropic elliptic interface problems on general bounded domains that can be described as a union of blocks. We assume that the curved interface falls exactly on the boundaries of blocks. The transfinite interpolation technique is applied to generate block-wise distorted quadrilateral meshes, which can resolve the interface with fine geometric details. By an extensive study of the harmonic average point method, an interpolation-free nine-point FV scheme is then derived on such multi-block grids for anisotropic elliptic interface problems with non-homogeneous jump conditions. Moreover, for the resulting linear algebraic systems from cell-centered FV discretization, a high-order prolongation operator based fast cascadic multigrid solver is developed and shown to be robust with respect to both the problem size and the jump of the diffusion coefficients. Various non-trivial examples including four interface problems and an elliptic problem in complex domain without interface, all with tens of millions of unknowns, are provided to show that the proposed multigrid solver is dozens of times faster than the classical algebraic multigrid method as implemented in the code AMG1R5 by Stüben.
基金supported by National Natural Science Foundation of China(Grant Nos.11871087 and 11971148)。
文摘This paper is concerned with two aspects of the fractional Navier-Stokes equation. First, we establish the local L^(2)theory of the hypo-dissipative Navier-Stokes system. More precisely, the existence of local-in-time as well as global-in-time local energy weak solutions to the hypo-dissipative Navier-Stokes system is proved.In particular, in order to construct a pressure with an explicit representation, some technical innovations are required due to the lack of known results on the local regularity of the non-local Stokes operator. Secondly, as an important application to the local L^(2)theory, we give a second construction of large self-similar solutions of the hypo-dissipative Navier-Stokes system along with the Leray-Schauder degree theory.
基金supported by National Natural Science Foundation of China(Grant Nos.12171148 and 11771138)the Construct Program of the Key Discipline in Hunan Province.Wei Liu was supported by National Natural Science Foundation of China(Grant Nos.12101252 and 11971007)+2 种基金supported by National Natural Science Foundation of China(Grant No.11901185)National Key Research and Development Program of China(Grant No.2021YFA1001300)the Fundamental Research Funds for the Central Universities(Grant No.531118010207).
文摘The local minimax method(LMM)proposed by Li and Zhou(2001,2002)is an efficient method to solve nonlinear elliptic partial differential equations(PDEs)with certain variational structures for multiple solutions.The steepest descent direction and the Armijo-type step-size search rules are adopted in Li and Zhou(2002)and play a significant role in the performance and convergence analysis of traditional LMMs.In this paper,a new algorithm framework of the LMMs is established based on general descent directions and two normalized(strong)Wolfe-Powell-type step-size search rules.The corresponding algorithm framework,named the normalized Wolfe-Powell-type LMM(NWP-LMM),is introduced with its feasibility and global convergence rigorously justified for general descent directions.As a special case,the global convergence of the NWP-LMM combined with the preconditioned steepest descent(PSD)directions is also verified.Consequently,it extends the framework of traditional LMMs.In addition,conjugate-gradient-type(CG-type)descent directions are utilized to speed up the NWP-LMM.Finally,extensive numerical results for several semilinear elliptic PDEs are reported to profile their multiple unstable solutions and compared with different algorithms in the LMM’s family to indicate the effectiveness and robustness of our algorithms.In practice,the NWP-LMM combined with the CG-type direction performs much better than its known LMM companions.
基金Supported by the NNSF of China(Grant Nos.12071125,12001183 and 11831007)the Hunan Provincial NSF(Grant Nos.2020JJ5097 and 2019JJ20012)the SRF of Hunan Provincial Education Department(Grant No.19B117)。
文摘Let M=ρ^(-1)I∈Mn(R)be an expanding matrix with 0<|ρ|<1 and D■Z^(n)be a finite digit set with O∈D and Z(mD)■Z(mD)■Z(mD)∪{0}■m^(-1)z^(n)for a prime m,where Z(mD):=(Ede emi(a)=O),LetμM.D be theassociatedsel-simiar measure defined by M.DO)-ZaeDμM,D(M()-d).In this paper,the necessary and sufficient conditions for L2(μM,D)to admit infinite orthogonal exponential functions are given.Moreover,by using the order theory of polynomial,we estimate the number of orthogonal exponential functions for all cases that L^(2)(μM,D)does not admit infinite orthogonal exponential functions.
基金Panyue Zhou was supported by the Hunan Provincial Natural Science Foundation of China(Grant No.2023JJ30008).
文摘It was shown recently that the heart of a twin cotorsion pair on an extriangulated category is semi-abelian.In this article,we consider a special class of hearts of twin cotorsion pairs induced by d-cluster tilting subcategories in extriangulated categories.We give a necessary and sufficient condition for such hearts to be abelian.In particular,we can also see that such hearts are hereditary.As an application,this generalizes the work by Liu in the exact case,thereby providing new insights into the triangulated case.
文摘In this paper, we consider online scheduling for jobs with arbitrary release times on the parallel uniform machine system. An algorithm with competitive ratio of 7.4641 is addressed, which is better than the best existing result of 12.
基金supported by the NSFC(Grant Nos.12171148,11771138)the NSFC(Grant Nos.12101252,11971007)+2 种基金the NSFC(Grant No.11901185)the National Key R&D Program of China(Grant No.2021YFA1001300)by the Fundamental Research Funds for the Central Universities(Grant No.531118010207).
文摘In this paper,by designing a normalized nonmonotone search strategy with the BarzilaiBorwein-type step-size,a novel local minimax method(LMM),which is a globally convergent iterative method,is proposed and analyzed to find multiple(unstable)saddle points of nonconvex functionals in Hilbert spaces.Compared to traditional LMMs with monotone search strategies,this approach,which does not require strict decrease of the objective functional value at each iterative step,is observed to converge faster with less computations.Firstly,based on a normalized iterative scheme coupled with a local peak selection that pulls the iterative point back onto the solution submanifold,by generalizing the Zhang-Hager(ZH)search strategy in the optimization theory to the LMM framework,a kind of normalized ZH-type nonmonotone step-size search strategy is introduced,and then a novel nonmonotone LMM is constructed.Its feasibility and global convergence results are rigorously carried out under the relaxation of the monotonicity for the functional at the iterative sequences.Secondly,in order to speed up the convergence of the nonmonotone LMM,a globally convergent Barzilai-Borwein-type LMM(GBBLMM)is presented by explicitly constructing the Barzilai-Borwein-type step-size as a trial step-size of the normalized ZH-type nonmonotone step-size search strategy in each iteration.Finally,the GBBLMM algorithm is implemented to find multiple unstable solutions of two classes of semilinear elliptic boundary value problems with variational structures:one is the semilinear elliptic equations with the homogeneous Dirichlet boundary condition and another is the linear elliptic equations with semilinear Neumann boundary conditions.Extensive numerical results indicate that our approach is very effective and speeds up the LMMs significantly.