Crossed beak is a complex mode of inheritance with prevalence ranging from 0.2 to 7.4% in at least 12 chicken strains worldwide.To reveal the intrinsic factors causing crossed beaks,genes expression patterns in bilate...Crossed beak is a complex mode of inheritance with prevalence ranging from 0.2 to 7.4% in at least 12 chicken strains worldwide.To reveal the intrinsic factors causing crossed beaks,genes expression patterns in bilateral mandibular condyle between affected and normal birds were characterized by RNA sequencing analysis in the present studies.Crossed beak was induced by short length of unilateral mandibular ramus,and a total of 110differentially expressed genes were up-or down-regulated in the affected(short)mandibular condyle side as compared to the normal side.Carbonic anhydrase 2(CA2)and Carbonic anhydrase 13(CA13)were enriched in the carbonate dehydratase activity,and high-expressed in mandibular condyle and osteoblasts(P<0.05).However,both were low-expressed in short mandibular condyle side of affected birds(P<0.05).The carbonate dehydratase inhibitor experiments confirmed that there is positive association between the calcification and carbonic anhydrase isoenzymes.Quantitative analysis with cetylpyridinium chloride showed a decrease in calcification when the cells were transfected with an anti-CA13 shRNA.Our research suggested that CA2 and CA13 are down-calcified in shortside mandibular condyle,and caused mandibular ramus to grow slowly.CA2 and CA13 have the critical role in crossed beaks by regulating calcification of mandibular condyle.展开更多
Background: RNA editing is a co/posttranscriptional modification mechanism that increases the diversity of transcripts, with potential functional consequences. The advent of next-generation sequencing technologies has...Background: RNA editing is a co/posttranscriptional modification mechanism that increases the diversity of transcripts, with potential functional consequences. The advent of next-generation sequencing technologies has enabled the identification of RNA edits at unprecedented throughput and resolution. However, our knowledge of RNA editing in swine is still limited.Results: Here, we utilized RES-Scanner to identify RNA editing sites in the brain, subcutaneous fat, heart, liver,muscle, lung and ovary in three 180-day-old Large White gilts based on matched strand-specific RNA sequencing and whole-genome resequencing datasets. In total, we identified 74863 editing sites, and 92.1% of these sites caused adenosine-to-guanosine(A-to-G) conversion. Most A-to-G sites were located in noncoding regions and generally had low editing levels. In total, 151 A-to-G sites were detected in coding regions(CDS), including 94 sites that could lead to nonsynonymous amino acid changes. We provide further evidence supporting a previous observation that pig transcriptomes are highly editable at PRE-1 elements. The number of A-to-G editing sites ranged from 4155(muscle) to 25001(brain) across the seven tissues. The expression levels of the ADAR enzymes could explain some but not all of this variation across tissues. The functional analysis of the genes with tissuespecific editing sites in each tissue revealed that RNA editing might play important roles in tissue function.Specifically, more pathways showed significant enrichment in the fat and liver than in other tissues, while no pathway was enriched in the muscle.Conclusions: This study identified a total of 74863 nonredundant RNA editing sites in seven tissues and revealed the potential importance of RNA editing in tissue function. Our findings largely extend the porcine editome and enhance our understanding of RNA editing in swine.展开更多
Background:The development of skeletal muscle in pigs during the embryonic stage is precisely regulated by transcriptional mechanisms,which depend on chromatin accessibility.However,how chromatin accessibility plays a...Background:The development of skeletal muscle in pigs during the embryonic stage is precisely regulated by transcriptional mechanisms,which depend on chromatin accessibility.However,how chromatin accessibility plays a regulatory role during embryonic skeletal muscle development in pigs has not been reported.To gain insight into the landscape of chromatin accessibility and the associated genome-wide transcriptome during embryonic muscle development,we performed ATAC-seq and RNA-seq analyses of skeletal muscle from pig embryos at 45,70 and 100 days post coitus(dpc).Results:In total,21,638,35,447 and 60,181 unique regions(or peaks)were found across the embryos at 45 dpc(LW45),70 dpc(LW70)and 100 dpc(LW100),respectively.More than 91%of the peaks were annotated within−1 kb to 100 bp of transcription start sites(TSSs).First,widespread increases in specific accessible chromatin regions(ACRs)from embryos at 45 to 100 dpc suggested that the regulatory mechanisms became increasingly complicated during embryonic development.Second,the findings from integrated ATAC-seq and RNA-seq analyses showed that not only the numbers but also the intensities of ACRs could control the expression of associated genes.Moreover,the motif screening of stage-specific ACRs revealed some transcription factors that regulate muscle developmentrelated genes,such as MyoG,Mef2c,and Mef2d.Several potential transcriptional repressors,including E2F6,OTX2 and CTCF,were identified among the genes that exhibited different regulation trends between the ATAC-seq and RNA-seq data.Conclusions:This work indicates that chromatin accessibility plays an important regulatory role in the embryonic muscle development of pigs and regulates the temporal and spatial expression patterns of key genes in muscle development by influencing the binding of transcription factors.Our results contribute to a better understanding of the regulatory dynamics of genes involved in pig embryonic skeletal muscle development.展开更多
Background:Although methionine(Met),the first-limiting dietary amino acid,has crucial roles in growth and regulation of lipid metabolism in ducks,mechanisms underlying are not well understood.Therefore,the objective w...Background:Although methionine(Met),the first-limiting dietary amino acid,has crucial roles in growth and regulation of lipid metabolism in ducks,mechanisms underlying are not well understood.Therefore,the objective was to use dietary Met deficiency to investigate the involvement of Met in lipid metabolism and fat accumulation of Pekin ducks.Methods:A total of 150 male Pekin ducks(15-d-old,558.5±4.4 g)were allocated into 5 groups(6 replicates with 5 birds each)and fed corn and soybean meal-based diets containing 0.28%,0.35%,0.43%,0.50%,and 0.58%Met,respectively,for 4 weeks.Met-deficient(Met-D,0.28%Met)and Met-adequate(Met-A,0.43%Met)groups were selected for subsequent molecular studies.Serum,liver,and abdominal fat samples were collected to assess the genes and proteins involved in lipid metabolism of Pekin ducks and hepatocytes were cultured in vivo for verification.Results:Dietary Met deficiency caused growth depression and excess fat deposition that were ameliorated by feeding diets with adequate Met.Serum triglyceride and non-esterified fatty acid concentrations increased(P<0.05),whereas serum concentrations of total cholesterol,low density lipoprotein cholesterol,total protein,and albumin decreased(P<0.05)in Met-D ducks compared to those in Met-A ducks.Based on hepatic proteomics analyses,dietary Met deficiency suppressed expression of key proteins related to fatty acid transport,fatty acid oxidation,tricarboxylic acid cycle,glycolysis/gluconeogenesis,ketogenesis,and electron transport chain;selected key proteins had similar expression patterns verified by qRT-PCR and Western blotting,which indicated these processes were likely impaired.In vitro verification with hepatocyte models confirmed albumin expression was diminished by Met deficiency.Additionally,in abdominal fat,dietary Met deficiency increased adipocyte diameter and area(P<0.05),and down-regulated(P<0.05)of lipolytic genes and proteins,suggesting Met deficiency may suppress lipolysis in adipocyte.Conclusion:Taken together,these data demonstrated that dietary Met deficiency in Pekin ducks resulted in stunted growth and excess fat deposition,which may be related to suppression of fatty acids transportation and hepatic catabolism.展开更多
Poultry genetics resources,including commercial selected lines,indigenous breeds,and experimental lines,are now being irreversibly lost at an alarming rate due to multiple reasons,which further threats the future live...Poultry genetics resources,including commercial selected lines,indigenous breeds,and experimental lines,are now being irreversibly lost at an alarming rate due to multiple reasons,which further threats the future livelihood and academic purpose.Collections of germplasm may reduce the risk of catastrophic loss of genetic diversity by guaranteeing that a pool of genetic variability is available to ensure the reintroduction and replenishment of the genetic stocks.The setting up of biobanks for poultry is challenging because the high sensitiveness of spermatozoa to freezing–thawing process,inability to cryopreserve the egg or embryo,coupled with the females being heterogametic sex.The progress in cryobiology and biotechnologies have made possible the extension of the range of germplasm for poultry species available in cryobanks,including semen,primordial germ cells,somatic cells and gonads.In this review,we introduce the state-of-the-art technologies for avian genetic resource conservation and breed reconstruction,and discuss the potential challenges for future study and further extending of these technologies to ongoing and future conservation efforts.展开更多
Background: Improving the feed efficiency would increase profitability for producers while also reducing the environmental footprint of livestock production. This study was conducted to investigate the relationships a...Background: Improving the feed efficiency would increase profitability for producers while also reducing the environmental footprint of livestock production. This study was conducted to investigate the relationships among feed efficiency traits and metabolizable efficiency traits in 180 male broilers. Significant loci and genes affecting the metabolizable efficiency traits were explored with an imputation-based genome-wide association study. The traits measured or calculated comprised three growth traits, five feed efficiency related traits, and nine metabolizable efficiency traits.Results: The residual feed intake(RFI) showed moderate to high and positive phenotypic correlations with eight other traits measured, including average daily feed intake(ADFI), dry excreta weight(DEW), gross energy excretion(GEE), crude protein excretion(CPE), metabolizable dry matter(MDM), nitrogen corrected apparent metabolizable energy(AMEn), abdominal fat weight(Ab F), and percentage of abdominal fat(Ab P). Greater correlations were observed between growth traits and the feed conversion ratio(FCR) than RFI. In addition, the RFI, FCR, ADFI, DEW,GEE, CPE, MDM, AMEn, Ab F, and Ab P were lower in low-RFI birds than high-RFI birds(P < 0.01 or P < 0.05), whereas the coefficients of MDM and MCP of low-RFI birds were greater than those of high-RFI birds(P < 0.01). Five narrow QTLs for metabolizable efficiency traits were detected, including one 82.46-kb region for DEW and GEE on Gallus gallus chromosome(GGA) 26, one 120.13-kb region for MDM and AMEn on GGA1, one 691.25-kb region for the coefficients of MDM and AMEn on GGA5, one region for the coefficients of MDM and MCP on GGA2(103.45–103.53 Mb), and one 690.50-kb region for the coefficient of MCP on GGA14. Linkage disequilibrium(LD) analysis indicated that the five regions contained high LD blocks, as well as the genes chromosome 26 C6 orf106 homolog(C26 H6 orf106), LOC396098, SH3 and multiple ankyrin repeat domains 2(SHANK2), ETS homologous factor(EHF), and histamine receptor H3-like(HRH3 L), which are known to be involved in the regulation of neurodevelopment, cell proliferation and differentiation, and food intake.Conclusions: Selection for low RFI significantly decreased chicken feed intake, excreta output, and abdominal fat deposition, and increased nutrient digestibility without changing the weight gain. Five novel QTL regions involved in the control of metabolizable efficiency in chickens were identified. These results, combined through nutritional and genetic approaches, should facilitate novel insights into improving feed efficiency in poultry and other species.展开更多
Dietary threonine(Thr) deficiency increases hepatic triglyceride content and reduces sebum and abdominal fat percentages in lean type(LT), but not in fatty type(FT) Pekin ducks. However, the molecular changes regardin...Dietary threonine(Thr) deficiency increases hepatic triglyceride content and reduces sebum and abdominal fat percentages in lean type(LT), but not in fatty type(FT) Pekin ducks. However, the molecular changes regarding the role of Thr in lipid metabolism in LT and FT ducks induced by Thr deficiency remains unknown. This study compared differential expression gene profiles related to lipid metabolism in FT and LT Pekin ducks affected by Thr deficiency. We performed transcriptomic profiling and scanned the gene expression in the liver, sebum, and abdominal fat of Pekin ducks fed either Thr-deficient or Thr-adequate diet for 21 days from 14 to 35 days of age. There were 187, 52, and 50 differentially expressed genes(DEGs) identified in the liver, sebum, and abdominal fat of LT ducks affected by Thr deficiency, of which 12, 9, and 5 genes were involved in lipid metabolism, respectively. Thr deficiency altered the expression of 27, 6, and 3 genes in FT ducks’ liver, sebum, and abdominal fat, respectively. None of the DEGs had a relationship with lipid metabolism in FT ducks. KEGG analysis showed that the DEGs in the LT ducks’ livers were enriched in lipid metabolism pathways(linolenic acid metabolism, glycerophospholipid metabolism, and arachidonic acid metabolism) and amino acid metabolism pathways(biosynthesis of amino acids, phenylalanine metabolism, β-alanine metabolism, and glycine, serine and threonine metabolisms). The DEGs in the sebum and abdominal fat of LT ducks were not enriched in lipid and amino acid metabolic pathways. Additionally, DEGs involved in lipid metabolism were found to be upregulated by Thr deficiency in LT ducks, such as malic enzyme 3(ME3), acyl-Co A synthetase short-chain family member 2(ACSS2) in liver, and lipase member M(LIPM) in sebum. In summary, dietary Thr deficiency regulated the gene expression involved in lipid metabolism in the liver, sebum, and abdominal fat of Pekin ducks in a genotype-dependent manner.展开更多
Excessive abdominal fat deposition reduces the feed efficiency and increase the cost of production in broilers.Therefore,it is an important task for poultry breeders to breed broilers with low abdominal fat.Abdominal ...Excessive abdominal fat deposition reduces the feed efficiency and increase the cost of production in broilers.Therefore,it is an important task for poultry breeders to breed broilers with low abdominal fat.Abdominal fat deposition is a highly complex biological process,and its molecular basis remains elusive.In this study,we performed transcriptome analysis to compare gene expression profiles at different stages of abdominal fat deposition to identify the key genes and pathways involved in abdominal fat accumulation.We found that abdominal fat weight(AFW)increased gradually from day 35(D35)to 91(D91),and then decreased at day 119(D119).Accordingly,after detecting differentially expressed genes(DEGs)by comparing gene expression profiles at D35 vs.D63 and D35 vs.D91,and identifying gene modules associated with fat deposition by weighted gene co-expression network analysis(WGCNA),we performed intersection analysis of the detected DEGs and WGCNA gene modules and identified 394 and 435 intersecting genes,respectively.The results of the Gene Ontology(GO)functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichment analyses showed that the steroid hormone biosynthesis and insulin signaling pathways were co-enriched in all intersecting genes,steroid hormones have been shown that regulated insulin signaling pathway,indicating the importance of the steroid hormone biosynthesis pathway in the development of broiler abdominal fat.We then identified 6 hub genes(ACTB,SOX9,RHOBTB2,PDLIM3,NEDD9,and DOCK4)related to abdominal fat deposition.Further analysis also revealed that there were direct interactions between 6 hub genes.SOX9 has been shown to bind to proteins required for steroid hormone receptor binding,and RHOBTB2 indirectly regulates the steroid hormones biosynthesis through cyclin factor,and ultimately affect fat deposition.Our results suggest that the genes RHOBTB2 and SOX9 play an important role in fat deposition in broilers,by regulating steroid hormone synthesis.These findings provide new targets and directions for further studies on the mechanisms of fat deposition in chicken.展开更多
Background:Effect of monochromatic green light illumination on embryo development has been reported in chickens.The avian pineal gland is an important photo-endocrine organ formed by a mediodorsal protrusion during em...Background:Effect of monochromatic green light illumination on embryo development has been reported in chickens.The avian pineal gland is an important photo-endocrine organ formed by a mediodorsal protrusion during embryonic development.However,the involvement of pineal gland in the light transduction process remains to be elucidated.In the present study,we investigated the influence of monochromatic green light on hatching time and explored the possible mechanism via pineal function.Results:A total of 600 eggs of White Leghorn(Shaver strain)were incubated under photoperiods of either 12 h of light and 12 h of darkness using monochromatic green light(12L:12D group)or 24 h of darkness(0L:24D group)for 18 d.Compared to 0L:24D group,the green light stimulation shortened the hatching time without extending the hatch window or impairing hatchability.The liver of embryos incubated in the 12L:12D light condition was heavier than those of the 0L:24D group on d 21 post incubation which may be linked to the observed increase in the serum concentration of insulin-like growth factor 1(IGF-1);primary secretion of the liver.Histological structure analysis of pineal gland demonstrated that the light stimulation increased follicle area,wall thickness and lumen area on d 10 and d 12 post incubation.Rhythmic function analysis demonstrated that three clock related genes(brain and muscle ARNT-like-1,BMAL1;circadian locomotor output cycles kaput,CLOCK;and cryptochrome-1,CRY1)and a melatonin rate-limiting enzyme related gene(arylalkylamine N-acetyltransferase,AANAT)were rhythmically expressed in the pineal gland of the 12L:12D group,but not in the 0L:24D group.Simultaneously,the light stimulation also increased the concentration of melatonin(MT),which was linked to hepatocyte proliferation and IGF-1 secretion in previous studies.Conclusions:The 12L:12D monochromatic green light stimulation during incubation shortened hatching time without impairing hatching performance.Pineal gland’s early histological development and maturation of its rhythmic function were accelerated by the light stimulation.It may be the key organ in the photo-endocrine axis that regulates embryo development,and the potential mechanism could be through enhanced secretion of MT in the 12L:12D group which promotes the secretion of IGF-1.展开更多
This study was to determine the effects of riboflavin deficiency(RD)on intestinal development,jejunum mucosa proteome,cecal short-chain fatty acids(SCFA)profiling,and cecal microbial diversity and community of starter...This study was to determine the effects of riboflavin deficiency(RD)on intestinal development,jejunum mucosa proteome,cecal short-chain fatty acids(SCFA)profiling,and cecal microbial diversity and community of starter Pekin ducks.Male white Pekin ducks(1 d old,n=240)were allocated into 2 groups,with 12 replicates and 10 birds per replicate in each group.For 21 d,all ducks had ad libitum access to either an RD or a riboflavin adequate(control,CON)diet,formulated by supplementing a basal diet with 0 or 10 mg riboflavin per kg of diet,respectively.Compared to the CON group,growth retardation,high mortality,and poor riboflavin status were observed in the RD group.Furthermore,RD reduced the villus height and the ratio of villus height to crypt depth of jejunum and ileum(P<0.05),indicating morphological alterations of the small intestine.In addition,dietary RD enhanced relative cecum weight and decreased cecal SCFA concentrations(P<0.05),including propionate,isobutyrate,butyrate,and isovalerate.The jejunum mucosa proteomics showed that 208 proteins were upregulated and 229 proteins were downregulated in the RD group compared to those in the CON group.Among these,RD mainly suppressed intestinal absorption and energy generation processes such as glycolysis and gluconeogenesis,fatty acid beta oxidation,tricarboxylic acid cycle,and oxidative phosphorylation,leading to impaired ATP generation.In addition,RD decreased the community richness and diversity of the bacterial community in the cecum of ducks.Specifically,RD reduced the abundance of butyrate-producing bacteria in the cecum(P<0.05),such as Eubacterium coprostanoligenes,Prevotella and Faecalibacterium.Dietary RD resulted in growth depression and intestinal hypofunction of Pekin ducks,which could be associated with impaired intestinal absorption and energy generation processes in intestinal mucosa,as well as gut microbiota dysbiosis.These findings contribute to our understanding of the mechanisms of intestinal hypofunction due to RD.展开更多
Pantothenic acid deficiency(PAD)in animals causes growth depression,fasting hypoglycemia and impaired lipid and glucose metabolism.However,a systematic multi-omics analysis of effects of PAD on hepatic function has ap...Pantothenic acid deficiency(PAD)in animals causes growth depression,fasting hypoglycemia and impaired lipid and glucose metabolism.However,a systematic multi-omics analysis of effects of PAD on hepatic function has apparently not been reported.We investigated liver proteome and metabolome changes induced by PAD to explain its effects on growth and liver metabolic disorders.Pekin ducks(1-dold,n=128)were allocated into 2 groups,with 8 replicates and 8 birds per replicate.For 16 d,all ducks had ad libitum access to either a PAD or a pantothenic acid adequate(control,CON)diet,formulated by supplementing a basal diet with 0 or 8 mg pantothenic acid/kg of diet,respectively.Liver enlargement,elevated liver glycogen concentrations and decreased liver concentrations of triglyceride and unsaturated fatty acids were present in the PAD group compared to the CON group.Based on integrated liver proteomics and metabolomics,PAD mainly affected glycogen synthesis and degradation,glycolysis and gluconeogenesis,tricarboxylic acid(TCA)cycle,peroxisome proliferator-activated receptor(PPAR)signaling pathway,fatty acid beta oxidation,and oxidative phosphorylation.Selected proteins were confirmed by Western blotting.Downregulation of proteins and metabolites involved in glycogen synthesis and degradation,glycolysis and gluconeogenesis implied that these processes were impaired in PAD ducks,which could have contributed to fasting hypoglycemia,liver glycogen storage,insufficient ATP production,and growth retardation.In contrast,PAD also upregulated proteins and metabolites involved in fatty acid beta oxidation,the TCA cycle,and oxidative phosphorylation processes in the liver;presumably compensatory responses to produce ATP.We inferred that PAD decreased liver triglyceride and unsaturated fatty acids by activating fatty acid beta oxidation and impairing unsaturated fatty acid synthesis.These findings contributed to our understanding of the mechanisms of PAD-induced changes in hepatic metabolism.展开更多
Dietary threonine(Thr)deficiency enhances triglyceride(TG)deposition in the liver of Pekin ducks,which injures hepatic function and impairs growth performance.However,the underlying molecular mechanisms remain unclear...Dietary threonine(Thr)deficiency enhances triglyceride(TG)deposition in the liver of Pekin ducks,which injures hepatic function and impairs growth performance.However,the underlying molecular mechanisms remain unclear.In the present study,we investigated the effects of dietary Thr deficiency on the expressions of proteins and phosphoproteins in liver of Pekin ducks,to identify the underlying molecular changes.A total of 300 one-day-old ducklings were divided into 3 groups with 10 replicates of 10 birds.All ducks were fed corn-wheat-peanut meal diets containing 0.46%,0.71%,and 0.96%Thr,respectively,from 1 to 21 days of age.Growth performance,serum parameters,hepatic TG content,and expression of genes involved in lipid metabolism of Pekin ducks were determined.A Thr deficiency group(Thr-D,0.46%Thr)and a Thr sufficiency group(Thr-S,0.71%Thr)were selected for subsequent proteomic and phosphoproteomic analysis.The results showed that Thr-D reduced the growth performance(P<0.001),and increased the plasma concentrations of cholesterol,high-density lipoprotein cholesterol,low-density lipoprotein cholesterol,and hepatic TG(P<0.05).Thr-D increased gene expression related to fatty acid and TG synthesis(P<0.05).A total of 176 proteins and 259 phosphosites(containing 198 phosphoproteins)were observed to be differentially expressed as a result of Thr-D.The upregulated proteins were enriched in the pathway related to amino acid metabolism,peroxisome.The down-regulated proteins were enriched in linolenic and arachidonic acid metabolism,and the Janus kinase-signal transducer and activator of transcription(JAK-STAT)signaling pathway.The upregulated phos-phoproteins were enriched in the pathways related to fatty acid biosynthesis,fructose and mannose metabolism,and glycolysis/gluconeogenesis.Thr-D reduced the phosphorylation of STAT1 at S729 and STAT3 at S728,and expression of STAT5B.In contrast,Thr-D increased non-receptor tyrosine-protein kinase(TYK2)expression and STAT1 phosphorylation at S649.Taken together,dietary Thr-D increased hepatic TG accumulation by upregulating the expression of genes and proteins,and phosphoproteins related to fatty acid and triglyceride synthesis.Furthermore,these processes might be regulated by the JAK-STAT signaling pathway,especially the phosphorylation of STAT1 and STAT3.展开更多
Background Crossbreeding is widely promoted as an efficient strategy to improve the productivity in agriculture.The molecular mechanism underlying heterosis for egg production is always intriguing in chicken.The trans...Background Crossbreeding is widely promoted as an efficient strategy to improve the productivity in agriculture.The molecular mechanism underlying heterosis for egg production is always intriguing in chicken.The transcriptional dynamic changes play a crucial role in the formation of heterosis,but little is known for the egg production traits.Results In present study,we measured the continuous manifestation of heterosis ranging from 2.67%to 10.24%for egg number in the crossbreds generated by reciprocal crossing White Leghorn and Beijing You chicken.The high-quality transcriptomes of ovary for purebreds(WW and YY)and crossbreds(WY and YW)in 5 laying stages were sequenced and integrated to identify regulatory networks relevant to the heterosis.We found highly conserved transcriptional features among 4 genetic groups.By using weighted gene co-expression network analysis(WGCNA),we obtained multiple gene co-expression modules that were significantly correlated with egg number for each group.The common KEGG pathways including apelin signaling pathway,cell cycle,ribosome,spliceosome and oxidative phosphorylation,were screened for the 2 crossbreds.Then,we identified consensus co-expression modules(CMs)that showed divergent expression pattern among crossbred(WY or YW)and purebreds(WW and YY).The hub genes of CMs were again overrepresented in the cell cycle pathway,and the crossbreds exhibited temporally complementary dominance of hub genes in the 5 laying stages.These results suggested that the crossbreds inherited from both parents to maintain the ovary function by cell cycle-related genes,contributing to the persistent heterosis for egg production.Furthermore,the dominant genes including MAD2L1,CHEK2 and E2F1 were demonstrated to function in ovarian follicle development and maturation and could be the candidate genes for egg production heterosis.Conclusion Our study characterized the dynamic profile of genome-wide gene expression in ovary and highlighted the role of dominant expression of cell cycle pathway genes in heterosis.These findings provided new insights for the molecular mechanism of egg production heterosis,which would facilitate the rational choice of suitable parents for producing crossbred chickens with higher egg production.展开更多
基金supported by the Beijing Featured Livestock and Poultry Genetic Resources Preservation Project,China(202203310002)China Agriculture Research System of MOF and MARA(CARS40)+1 种基金the Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences(ASTIPIAS04)the Central Guidance on Local Science and Technology Development Fund of Hebei Province,China(236Z6602G)。
文摘Crossed beak is a complex mode of inheritance with prevalence ranging from 0.2 to 7.4% in at least 12 chicken strains worldwide.To reveal the intrinsic factors causing crossed beaks,genes expression patterns in bilateral mandibular condyle between affected and normal birds were characterized by RNA sequencing analysis in the present studies.Crossed beak was induced by short length of unilateral mandibular ramus,and a total of 110differentially expressed genes were up-or down-regulated in the affected(short)mandibular condyle side as compared to the normal side.Carbonic anhydrase 2(CA2)and Carbonic anhydrase 13(CA13)were enriched in the carbonate dehydratase activity,and high-expressed in mandibular condyle and osteoblasts(P<0.05).However,both were low-expressed in short mandibular condyle side of affected birds(P<0.05).The carbonate dehydratase inhibitor experiments confirmed that there is positive association between the calcification and carbonic anhydrase isoenzymes.Quantitative analysis with cetylpyridinium chloride showed a decrease in calcification when the cells were transfected with an anti-CA13 shRNA.Our research suggested that CA2 and CA13 are down-calcified in shortside mandibular condyle,and caused mandibular ramus to grow slowly.CA2 and CA13 have the critical role in crossed beaks by regulating calcification of mandibular condyle.
基金supported by the National Key Technology R&D Program of China(2015BAD03B02–2)Beijing Natural Science Foundation(6174047)+1 种基金earmarked fund for Modern Agro-industry Technology Research System(CARS-35)Agricultural Science and Technology Innovation Program(ASTIP-IAS02)
文摘Background: RNA editing is a co/posttranscriptional modification mechanism that increases the diversity of transcripts, with potential functional consequences. The advent of next-generation sequencing technologies has enabled the identification of RNA edits at unprecedented throughput and resolution. However, our knowledge of RNA editing in swine is still limited.Results: Here, we utilized RES-Scanner to identify RNA editing sites in the brain, subcutaneous fat, heart, liver,muscle, lung and ovary in three 180-day-old Large White gilts based on matched strand-specific RNA sequencing and whole-genome resequencing datasets. In total, we identified 74863 editing sites, and 92.1% of these sites caused adenosine-to-guanosine(A-to-G) conversion. Most A-to-G sites were located in noncoding regions and generally had low editing levels. In total, 151 A-to-G sites were detected in coding regions(CDS), including 94 sites that could lead to nonsynonymous amino acid changes. We provide further evidence supporting a previous observation that pig transcriptomes are highly editable at PRE-1 elements. The number of A-to-G editing sites ranged from 4155(muscle) to 25001(brain) across the seven tissues. The expression levels of the ADAR enzymes could explain some but not all of this variation across tissues. The functional analysis of the genes with tissuespecific editing sites in each tissue revealed that RNA editing might play important roles in tissue function.Specifically, more pathways showed significant enrichment in the fat and liver than in other tissues, while no pathway was enriched in the muscle.Conclusions: This study identified a total of 74863 nonredundant RNA editing sites in seven tissues and revealed the potential importance of RNA editing in tissue function. Our findings largely extend the porcine editome and enhance our understanding of RNA editing in swine.
基金supported by the Agricultural Science and Technology Innovation Program(ASTIP-IAS02).
文摘Background:The development of skeletal muscle in pigs during the embryonic stage is precisely regulated by transcriptional mechanisms,which depend on chromatin accessibility.However,how chromatin accessibility plays a regulatory role during embryonic skeletal muscle development in pigs has not been reported.To gain insight into the landscape of chromatin accessibility and the associated genome-wide transcriptome during embryonic muscle development,we performed ATAC-seq and RNA-seq analyses of skeletal muscle from pig embryos at 45,70 and 100 days post coitus(dpc).Results:In total,21,638,35,447 and 60,181 unique regions(or peaks)were found across the embryos at 45 dpc(LW45),70 dpc(LW70)and 100 dpc(LW100),respectively.More than 91%of the peaks were annotated within−1 kb to 100 bp of transcription start sites(TSSs).First,widespread increases in specific accessible chromatin regions(ACRs)from embryos at 45 to 100 dpc suggested that the regulatory mechanisms became increasingly complicated during embryonic development.Second,the findings from integrated ATAC-seq and RNA-seq analyses showed that not only the numbers but also the intensities of ACRs could control the expression of associated genes.Moreover,the motif screening of stage-specific ACRs revealed some transcription factors that regulate muscle developmentrelated genes,such as MyoG,Mef2c,and Mef2d.Several potential transcriptional repressors,including E2F6,OTX2 and CTCF,were identified among the genes that exhibited different regulation trends between the ATAC-seq and RNA-seq data.Conclusions:This work indicates that chromatin accessibility plays an important regulatory role in the embryonic muscle development of pigs and regulates the temporal and spatial expression patterns of key genes in muscle development by influencing the binding of transcription factors.Our results contribute to a better understanding of the regulatory dynamics of genes involved in pig embryonic skeletal muscle development.
基金supported by China Agriculture Research System of MOF and MARA(CARS-42)the Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences(CXGC-IAS-09)Central Scientific Institution Fundamental Research Funds(1610382022005).
文摘Background:Although methionine(Met),the first-limiting dietary amino acid,has crucial roles in growth and regulation of lipid metabolism in ducks,mechanisms underlying are not well understood.Therefore,the objective was to use dietary Met deficiency to investigate the involvement of Met in lipid metabolism and fat accumulation of Pekin ducks.Methods:A total of 150 male Pekin ducks(15-d-old,558.5±4.4 g)were allocated into 5 groups(6 replicates with 5 birds each)and fed corn and soybean meal-based diets containing 0.28%,0.35%,0.43%,0.50%,and 0.58%Met,respectively,for 4 weeks.Met-deficient(Met-D,0.28%Met)and Met-adequate(Met-A,0.43%Met)groups were selected for subsequent molecular studies.Serum,liver,and abdominal fat samples were collected to assess the genes and proteins involved in lipid metabolism of Pekin ducks and hepatocytes were cultured in vivo for verification.Results:Dietary Met deficiency caused growth depression and excess fat deposition that were ameliorated by feeding diets with adequate Met.Serum triglyceride and non-esterified fatty acid concentrations increased(P<0.05),whereas serum concentrations of total cholesterol,low density lipoprotein cholesterol,total protein,and albumin decreased(P<0.05)in Met-D ducks compared to those in Met-A ducks.Based on hepatic proteomics analyses,dietary Met deficiency suppressed expression of key proteins related to fatty acid transport,fatty acid oxidation,tricarboxylic acid cycle,glycolysis/gluconeogenesis,ketogenesis,and electron transport chain;selected key proteins had similar expression patterns verified by qRT-PCR and Western blotting,which indicated these processes were likely impaired.In vitro verification with hepatocyte models confirmed albumin expression was diminished by Met deficiency.Additionally,in abdominal fat,dietary Met deficiency increased adipocyte diameter and area(P<0.05),and down-regulated(P<0.05)of lipolytic genes and proteins,suggesting Met deficiency may suppress lipolysis in adipocyte.Conclusion:Taken together,these data demonstrated that dietary Met deficiency in Pekin ducks resulted in stunted growth and excess fat deposition,which may be related to suppression of fatty acids transportation and hepatic catabolism.
基金Financial support of this study was provided by National Key R&D Program of China(No.2021YFD1200301 and 2021YFD1200305)joint research project raised by National Natural Science Foundation of China and The Egyptian Academy of Scientific Research and Technology(No.31961143028)+1 种基金China Agriculture Research Systems(No.CARS-40)National Germplasm Bank of Domestic Animals(No.2021–2022)。
文摘Poultry genetics resources,including commercial selected lines,indigenous breeds,and experimental lines,are now being irreversibly lost at an alarming rate due to multiple reasons,which further threats the future livelihood and academic purpose.Collections of germplasm may reduce the risk of catastrophic loss of genetic diversity by guaranteeing that a pool of genetic variability is available to ensure the reintroduction and replenishment of the genetic stocks.The setting up of biobanks for poultry is challenging because the high sensitiveness of spermatozoa to freezing–thawing process,inability to cryopreserve the egg or embryo,coupled with the females being heterogametic sex.The progress in cryobiology and biotechnologies have made possible the extension of the range of germplasm for poultry species available in cryobanks,including semen,primordial germ cells,somatic cells and gonads.In this review,we introduce the state-of-the-art technologies for avian genetic resource conservation and breed reconstruction,and discuss the potential challenges for future study and further extending of these technologies to ongoing and future conservation efforts.
基金supported by grants from the National Nonprofit Institute Research Grant (Y2020PT02)the earmarked fund for the modern agroindustry technology research system (CARS-41)+1 种基金Agricultural Science and Technology Innovation Program (ASTIP-IAS04ASTIP-IAS-TS-15)。
文摘Background: Improving the feed efficiency would increase profitability for producers while also reducing the environmental footprint of livestock production. This study was conducted to investigate the relationships among feed efficiency traits and metabolizable efficiency traits in 180 male broilers. Significant loci and genes affecting the metabolizable efficiency traits were explored with an imputation-based genome-wide association study. The traits measured or calculated comprised three growth traits, five feed efficiency related traits, and nine metabolizable efficiency traits.Results: The residual feed intake(RFI) showed moderate to high and positive phenotypic correlations with eight other traits measured, including average daily feed intake(ADFI), dry excreta weight(DEW), gross energy excretion(GEE), crude protein excretion(CPE), metabolizable dry matter(MDM), nitrogen corrected apparent metabolizable energy(AMEn), abdominal fat weight(Ab F), and percentage of abdominal fat(Ab P). Greater correlations were observed between growth traits and the feed conversion ratio(FCR) than RFI. In addition, the RFI, FCR, ADFI, DEW,GEE, CPE, MDM, AMEn, Ab F, and Ab P were lower in low-RFI birds than high-RFI birds(P < 0.01 or P < 0.05), whereas the coefficients of MDM and MCP of low-RFI birds were greater than those of high-RFI birds(P < 0.01). Five narrow QTLs for metabolizable efficiency traits were detected, including one 82.46-kb region for DEW and GEE on Gallus gallus chromosome(GGA) 26, one 120.13-kb region for MDM and AMEn on GGA1, one 691.25-kb region for the coefficients of MDM and AMEn on GGA5, one region for the coefficients of MDM and MCP on GGA2(103.45–103.53 Mb), and one 690.50-kb region for the coefficient of MCP on GGA14. Linkage disequilibrium(LD) analysis indicated that the five regions contained high LD blocks, as well as the genes chromosome 26 C6 orf106 homolog(C26 H6 orf106), LOC396098, SH3 and multiple ankyrin repeat domains 2(SHANK2), ETS homologous factor(EHF), and histamine receptor H3-like(HRH3 L), which are known to be involved in the regulation of neurodevelopment, cell proliferation and differentiation, and food intake.Conclusions: Selection for low RFI significantly decreased chicken feed intake, excreta output, and abdominal fat deposition, and increased nutrient digestibility without changing the weight gain. Five novel QTL regions involved in the control of metabolizable efficiency in chickens were identified. These results, combined through nutritional and genetic approaches, should facilitate novel insights into improving feed efficiency in poultry and other species.
基金supported by the National Natural Science Foundation of China(31902174)the Natural Science Foundation of Jiangsu Province,China(BK20190902)the Natural Science Foundation of Jiangsu Higher Education Institutions of China(19KJD230003)。
文摘Dietary threonine(Thr) deficiency increases hepatic triglyceride content and reduces sebum and abdominal fat percentages in lean type(LT), but not in fatty type(FT) Pekin ducks. However, the molecular changes regarding the role of Thr in lipid metabolism in LT and FT ducks induced by Thr deficiency remains unknown. This study compared differential expression gene profiles related to lipid metabolism in FT and LT Pekin ducks affected by Thr deficiency. We performed transcriptomic profiling and scanned the gene expression in the liver, sebum, and abdominal fat of Pekin ducks fed either Thr-deficient or Thr-adequate diet for 21 days from 14 to 35 days of age. There were 187, 52, and 50 differentially expressed genes(DEGs) identified in the liver, sebum, and abdominal fat of LT ducks affected by Thr deficiency, of which 12, 9, and 5 genes were involved in lipid metabolism, respectively. Thr deficiency altered the expression of 27, 6, and 3 genes in FT ducks’ liver, sebum, and abdominal fat, respectively. None of the DEGs had a relationship with lipid metabolism in FT ducks. KEGG analysis showed that the DEGs in the LT ducks’ livers were enriched in lipid metabolism pathways(linolenic acid metabolism, glycerophospholipid metabolism, and arachidonic acid metabolism) and amino acid metabolism pathways(biosynthesis of amino acids, phenylalanine metabolism, β-alanine metabolism, and glycine, serine and threonine metabolisms). The DEGs in the sebum and abdominal fat of LT ducks were not enriched in lipid and amino acid metabolic pathways. Additionally, DEGs involved in lipid metabolism were found to be upregulated by Thr deficiency in LT ducks, such as malic enzyme 3(ME3), acyl-Co A synthetase short-chain family member 2(ACSS2) in liver, and lipase member M(LIPM) in sebum. In summary, dietary Thr deficiency regulated the gene expression involved in lipid metabolism in the liver, sebum, and abdominal fat of Pekin ducks in a genotype-dependent manner.
基金funded by the grants from the Beijing Natural Science Foundation,China(6202028)the National Natural Science Foundation of China(32172723)+2 种基金the State Key Laboratory of Animal Nutrition,China(2004DA125184G2109)the Agricultural Science and Technology Innovation Program,China(ASTIP-IAS04)the China Agriculture Research System of MOF and MARA(CARS-41).
文摘Excessive abdominal fat deposition reduces the feed efficiency and increase the cost of production in broilers.Therefore,it is an important task for poultry breeders to breed broilers with low abdominal fat.Abdominal fat deposition is a highly complex biological process,and its molecular basis remains elusive.In this study,we performed transcriptome analysis to compare gene expression profiles at different stages of abdominal fat deposition to identify the key genes and pathways involved in abdominal fat accumulation.We found that abdominal fat weight(AFW)increased gradually from day 35(D35)to 91(D91),and then decreased at day 119(D119).Accordingly,after detecting differentially expressed genes(DEGs)by comparing gene expression profiles at D35 vs.D63 and D35 vs.D91,and identifying gene modules associated with fat deposition by weighted gene co-expression network analysis(WGCNA),we performed intersection analysis of the detected DEGs and WGCNA gene modules and identified 394 and 435 intersecting genes,respectively.The results of the Gene Ontology(GO)functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichment analyses showed that the steroid hormone biosynthesis and insulin signaling pathways were co-enriched in all intersecting genes,steroid hormones have been shown that regulated insulin signaling pathway,indicating the importance of the steroid hormone biosynthesis pathway in the development of broiler abdominal fat.We then identified 6 hub genes(ACTB,SOX9,RHOBTB2,PDLIM3,NEDD9,and DOCK4)related to abdominal fat deposition.Further analysis also revealed that there were direct interactions between 6 hub genes.SOX9 has been shown to bind to proteins required for steroid hormone receptor binding,and RHOBTB2 indirectly regulates the steroid hormones biosynthesis through cyclin factor,and ultimately affect fat deposition.Our results suggest that the genes RHOBTB2 and SOX9 play an important role in fat deposition in broilers,by regulating steroid hormone synthesis.These findings provide new targets and directions for further studies on the mechanisms of fat deposition in chicken.
基金Financial support of this study was provided by The National Key Research and Development Program of China(grant number 2016YFD0500502)China Agriculture Research Systems(grant number CARS-40)+1 种基金Fundamental Research Funds for Central Non-profit Scientific Institution(grant number 2018-YWF-YB-20)Agricultural Science and Technology Innovation Program(grant number ASTIP-IAS04).
文摘Background:Effect of monochromatic green light illumination on embryo development has been reported in chickens.The avian pineal gland is an important photo-endocrine organ formed by a mediodorsal protrusion during embryonic development.However,the involvement of pineal gland in the light transduction process remains to be elucidated.In the present study,we investigated the influence of monochromatic green light on hatching time and explored the possible mechanism via pineal function.Results:A total of 600 eggs of White Leghorn(Shaver strain)were incubated under photoperiods of either 12 h of light and 12 h of darkness using monochromatic green light(12L:12D group)or 24 h of darkness(0L:24D group)for 18 d.Compared to 0L:24D group,the green light stimulation shortened the hatching time without extending the hatch window or impairing hatchability.The liver of embryos incubated in the 12L:12D light condition was heavier than those of the 0L:24D group on d 21 post incubation which may be linked to the observed increase in the serum concentration of insulin-like growth factor 1(IGF-1);primary secretion of the liver.Histological structure analysis of pineal gland demonstrated that the light stimulation increased follicle area,wall thickness and lumen area on d 10 and d 12 post incubation.Rhythmic function analysis demonstrated that three clock related genes(brain and muscle ARNT-like-1,BMAL1;circadian locomotor output cycles kaput,CLOCK;and cryptochrome-1,CRY1)and a melatonin rate-limiting enzyme related gene(arylalkylamine N-acetyltransferase,AANAT)were rhythmically expressed in the pineal gland of the 12L:12D group,but not in the 0L:24D group.Simultaneously,the light stimulation also increased the concentration of melatonin(MT),which was linked to hepatocyte proliferation and IGF-1 secretion in previous studies.Conclusions:The 12L:12D monochromatic green light stimulation during incubation shortened hatching time without impairing hatching performance.Pineal gland’s early histological development and maturation of its rhythmic function were accelerated by the light stimulation.It may be the key organ in the photo-endocrine axis that regulates embryo development,and the potential mechanism could be through enhanced secretion of MT in the 12L:12D group which promotes the secretion of IGF-1.
基金This work was supported by the earmarked fund for the National Natural Science Foundation of China(32002193)China Agricultural Research System(CARS-42).
文摘This study was to determine the effects of riboflavin deficiency(RD)on intestinal development,jejunum mucosa proteome,cecal short-chain fatty acids(SCFA)profiling,and cecal microbial diversity and community of starter Pekin ducks.Male white Pekin ducks(1 d old,n=240)were allocated into 2 groups,with 12 replicates and 10 birds per replicate in each group.For 21 d,all ducks had ad libitum access to either an RD or a riboflavin adequate(control,CON)diet,formulated by supplementing a basal diet with 0 or 10 mg riboflavin per kg of diet,respectively.Compared to the CON group,growth retardation,high mortality,and poor riboflavin status were observed in the RD group.Furthermore,RD reduced the villus height and the ratio of villus height to crypt depth of jejunum and ileum(P<0.05),indicating morphological alterations of the small intestine.In addition,dietary RD enhanced relative cecum weight and decreased cecal SCFA concentrations(P<0.05),including propionate,isobutyrate,butyrate,and isovalerate.The jejunum mucosa proteomics showed that 208 proteins were upregulated and 229 proteins were downregulated in the RD group compared to those in the CON group.Among these,RD mainly suppressed intestinal absorption and energy generation processes such as glycolysis and gluconeogenesis,fatty acid beta oxidation,tricarboxylic acid cycle,and oxidative phosphorylation,leading to impaired ATP generation.In addition,RD decreased the community richness and diversity of the bacterial community in the cecum of ducks.Specifically,RD reduced the abundance of butyrate-producing bacteria in the cecum(P<0.05),such as Eubacterium coprostanoligenes,Prevotella and Faecalibacterium.Dietary RD resulted in growth depression and intestinal hypofunction of Pekin ducks,which could be associated with impaired intestinal absorption and energy generation processes in intestinal mucosa,as well as gut microbiota dysbiosis.These findings contribute to our understanding of the mechanisms of intestinal hypofunction due to RD.
基金supported by the earmarked fund for China Agricultural Research System(CARS-42)the science and technology innovation project of Chinese Academy of Agricultural Sciences(CXGC-IAS-09)Taishan Industry Leadership Talent Project of Shandong province in China(TSCY20190108)。
文摘Pantothenic acid deficiency(PAD)in animals causes growth depression,fasting hypoglycemia and impaired lipid and glucose metabolism.However,a systematic multi-omics analysis of effects of PAD on hepatic function has apparently not been reported.We investigated liver proteome and metabolome changes induced by PAD to explain its effects on growth and liver metabolic disorders.Pekin ducks(1-dold,n=128)were allocated into 2 groups,with 8 replicates and 8 birds per replicate.For 16 d,all ducks had ad libitum access to either a PAD or a pantothenic acid adequate(control,CON)diet,formulated by supplementing a basal diet with 0 or 8 mg pantothenic acid/kg of diet,respectively.Liver enlargement,elevated liver glycogen concentrations and decreased liver concentrations of triglyceride and unsaturated fatty acids were present in the PAD group compared to the CON group.Based on integrated liver proteomics and metabolomics,PAD mainly affected glycogen synthesis and degradation,glycolysis and gluconeogenesis,tricarboxylic acid(TCA)cycle,peroxisome proliferator-activated receptor(PPAR)signaling pathway,fatty acid beta oxidation,and oxidative phosphorylation.Selected proteins were confirmed by Western blotting.Downregulation of proteins and metabolites involved in glycogen synthesis and degradation,glycolysis and gluconeogenesis implied that these processes were impaired in PAD ducks,which could have contributed to fasting hypoglycemia,liver glycogen storage,insufficient ATP production,and growth retardation.In contrast,PAD also upregulated proteins and metabolites involved in fatty acid beta oxidation,the TCA cycle,and oxidative phosphorylation processes in the liver;presumably compensatory responses to produce ATP.We inferred that PAD decreased liver triglyceride and unsaturated fatty acids by activating fatty acid beta oxidation and impairing unsaturated fatty acid synthesis.These findings contributed to our understanding of the mechanisms of PAD-induced changes in hepatic metabolism.
基金supported by National Natural Science Foundation of China(31902174)Natural Science Foundation of Jiangsu Province(BK20190902)Tackled key technologies in agriculture and rural areas of Jiangsu Science and Technology Plan(BE2022310).
文摘Dietary threonine(Thr)deficiency enhances triglyceride(TG)deposition in the liver of Pekin ducks,which injures hepatic function and impairs growth performance.However,the underlying molecular mechanisms remain unclear.In the present study,we investigated the effects of dietary Thr deficiency on the expressions of proteins and phosphoproteins in liver of Pekin ducks,to identify the underlying molecular changes.A total of 300 one-day-old ducklings were divided into 3 groups with 10 replicates of 10 birds.All ducks were fed corn-wheat-peanut meal diets containing 0.46%,0.71%,and 0.96%Thr,respectively,from 1 to 21 days of age.Growth performance,serum parameters,hepatic TG content,and expression of genes involved in lipid metabolism of Pekin ducks were determined.A Thr deficiency group(Thr-D,0.46%Thr)and a Thr sufficiency group(Thr-S,0.71%Thr)were selected for subsequent proteomic and phosphoproteomic analysis.The results showed that Thr-D reduced the growth performance(P<0.001),and increased the plasma concentrations of cholesterol,high-density lipoprotein cholesterol,low-density lipoprotein cholesterol,and hepatic TG(P<0.05).Thr-D increased gene expression related to fatty acid and TG synthesis(P<0.05).A total of 176 proteins and 259 phosphosites(containing 198 phosphoproteins)were observed to be differentially expressed as a result of Thr-D.The upregulated proteins were enriched in the pathway related to amino acid metabolism,peroxisome.The down-regulated proteins were enriched in linolenic and arachidonic acid metabolism,and the Janus kinase-signal transducer and activator of transcription(JAK-STAT)signaling pathway.The upregulated phos-phoproteins were enriched in the pathways related to fatty acid biosynthesis,fructose and mannose metabolism,and glycolysis/gluconeogenesis.Thr-D reduced the phosphorylation of STAT1 at S729 and STAT3 at S728,and expression of STAT5B.In contrast,Thr-D increased non-receptor tyrosine-protein kinase(TYK2)expression and STAT1 phosphorylation at S649.Taken together,dietary Thr-D increased hepatic TG accumulation by upregulating the expression of genes and proteins,and phosphoproteins related to fatty acid and triglyceride synthesis.Furthermore,these processes might be regulated by the JAK-STAT signaling pathway,especially the phosphorylation of STAT1 and STAT3.
基金supported by the grants from National Natural Science Foundation of China(32302724 to Jingwei Yuan)the China Agriculture Research System of MOF and MARA(CARS-40 to Yanyan Sun)the Agricultural Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences(ASTIP-IAS16 to Jilan Chen)。
文摘Background Crossbreeding is widely promoted as an efficient strategy to improve the productivity in agriculture.The molecular mechanism underlying heterosis for egg production is always intriguing in chicken.The transcriptional dynamic changes play a crucial role in the formation of heterosis,but little is known for the egg production traits.Results In present study,we measured the continuous manifestation of heterosis ranging from 2.67%to 10.24%for egg number in the crossbreds generated by reciprocal crossing White Leghorn and Beijing You chicken.The high-quality transcriptomes of ovary for purebreds(WW and YY)and crossbreds(WY and YW)in 5 laying stages were sequenced and integrated to identify regulatory networks relevant to the heterosis.We found highly conserved transcriptional features among 4 genetic groups.By using weighted gene co-expression network analysis(WGCNA),we obtained multiple gene co-expression modules that were significantly correlated with egg number for each group.The common KEGG pathways including apelin signaling pathway,cell cycle,ribosome,spliceosome and oxidative phosphorylation,were screened for the 2 crossbreds.Then,we identified consensus co-expression modules(CMs)that showed divergent expression pattern among crossbred(WY or YW)and purebreds(WW and YY).The hub genes of CMs were again overrepresented in the cell cycle pathway,and the crossbreds exhibited temporally complementary dominance of hub genes in the 5 laying stages.These results suggested that the crossbreds inherited from both parents to maintain the ovary function by cell cycle-related genes,contributing to the persistent heterosis for egg production.Furthermore,the dominant genes including MAD2L1,CHEK2 and E2F1 were demonstrated to function in ovarian follicle development and maturation and could be the candidate genes for egg production heterosis.Conclusion Our study characterized the dynamic profile of genome-wide gene expression in ovary and highlighted the role of dominant expression of cell cycle pathway genes in heterosis.These findings provided new insights for the molecular mechanism of egg production heterosis,which would facilitate the rational choice of suitable parents for producing crossbred chickens with higher egg production.